timjamesScience.com
  • Home
  • About
  • Books and reviews
  • Blog
  • Blogs by Topic
  • Media and Appearances

Is the Covid Vaccine Safe?

12/5/2020

0 Comments

 
Picture
The Nazi dentist from Marathon Man wants to know...
Remember February?
    It sounds like a good title for an arty novel doesn't it? "Remember February by tim james" a thoughtful coming-of-age drama about a farmhand who learns to reconcile his youth with an ever-changing political climate. But actually, I want to think back to February 2020 when “coronavirus” was just a media fire-alarm happening somewhere else. In early March I wrote an essay about the virus because I was getting asked questions by my students and I wanted to give them solid facts. The UK death toll stood at a wistful 2 and all we had to worry about was coughing into elbows and washing hands.
    In April I wrote a follow-up, reflecting on how quickly the world had changed and how science was ultimately going to win this war. Now, at the end of the year, I can finally say that my faith has been rewarded.  On 9th November the pharmaceutical giant Pfizer, in collaboration with BioNTech, announced a 90% effective vaccine. A week later, on 16th November, Moderna announced their own vaccine working to 93%, and on the 23rd, AstraZeneca announced one with 70%-90% efficacy depending on dose.
    Finally, on 2nd December, the Medicines and Healthcare products Regulatory Agency (the UK version of the FDA in America) confirmed that the Pfizer vaccine passes all the safety requirements needed to be administered. A monumental and unprecedented task now gets underway as governments seek to inoculate the human race, bringing this pandemic to its knees. Now we face a new problem.  As that creepy bloke in Chernobyl put it, we need to...
Picture
The Trouble With Science
    One of the problems we’ve faced over the last few months is that the public has gotten a really good look at how science actually works and they haven’t liked it.  The false starts, the mistakes and the endless contradictions about masks can make it look like scientists don’t know what they’re doing.
    The slow and self-doubting pace at which science moves, compared to the high speed at which the mass media reports news has led to an information vacuum. It’s nobody’s fault of course – we want the media to report news quickly and we want science to go slowly – but put them together and we end up with gaps. It’s only natural that those gaps have been filled with conspiracy.  Conspiracies are always easy to understand and always provide clear answers. Science, which is cautious, counterintuitive and complicated, can’t compete.
    There’s no way I can address every bit of nonsense flying around the web, but I will mention the most entertaining thing I’ve heard – that the vaccine contains nanotech devices used to spy on us. Let’s ignore the fact that the first people getting the vaccine will be 80-year-olds in care homes (who probably don’t pose much threat to the government), the obvious logical oversight is that if the government did want to use microchips to spy on us it would be a lot easier to put them in the water supply or...y'know...the phones we all have?
    No government has come out of this happy because every single one has lost money. Even the pharmaceutical giants set to make billions from the vaccines have suffered under the pandemic. This pandemic wasn't engineered for anyone's benefit, because nobody has. Except  for Netflix of course.  They've don'e alright. Hmmmmmm...
    But why so much anxiety and suspicion directed toward vaccines? When a new cough-drop comes onto the market you don’t get people panicking about how it contains bits of dead baby (another conspiracy I’ve heard this week). The irony is that people will gladly go to a club and snort a mystery white powder off the back of a toilet tank, but won’t touch something which has been carefully regulated by biologists…people are weird sometimes.
    I guess it’s because vaccines are different to other chemicals.  It’s someone shoving a metal spike into your arm and squirting stuff up your arteries. That’s going to give anyone the heebie-jeebies. So, in an effort to give people some reassurance, I’m going to tackle the main questions they might have about the new vaccines.
Picture
Prove to me that they AREN'T behind the pandemic!
What Does It Do?
    Vaccines are not medicines which treat or cure a virus. Unlike a bacteria which can be killed with anti-biotics, a virus particle is not living, so the best defence is your body’s own immune system. Your blood is full of microscopic bio-machines which have been honed over 3 billion years to destroy viruses.  What a vaccine does is allow this immune system to get some practice, so when you get infected with the real thing (and you will) it knows what to do.  This means vaccines can cause symptoms of the disease they’re protecting against because your body reacts as if it were happening for real. The sickness you sometimes feel after a vaccine is (counterintuitively) a sign that it’s working.

Should It Be Compulsory?
    Some people aren't able to recieve vaccines because of medical complications (I work with someone in that category). These people are only safe from a virus if everyone around them has had the shot.  While every individual should have a choice over whether they “take their chances”…by not getting a vaccine they risk becoming a carrier which can infect someone who doesn’t have the choice. In other words: they are forcing someone else to take their chances. That’s an ethically tough nut to crack and I don't have an answer to it. Is a person's freedom to refuse a vaccine also their freedom to risk infecting someone who can't?
 
Isn't 90% Effective, a bit Suspicious?
    Most vaccines work by injecting a person with a disabled version of the virus (see my earlier blog) and usually boast a 60/70% success rate. These new ones are in the 90% region - doesn’t that seem a little too good to be true?
    The reason these new vaccines seem better is because they’re based on a new design. What's called an mRNA mechanism. mRNA (messenger-Ribose Nucleic Acid) is a molecule every living thing has in its cells, similar to DNA. The way these vaccines work is by injecting you with mRNA that codes for a “spike protein”. It’s basically the bit of coronavirus your immune system recognises. Once you’ve been injected with it, your body manufactures the coronavirus spike proteins and your body gets to work building a response. The mRNA then breaks down and you’re in the clear. You don’t even have to inject someone with the virus itself...which is arguably safer.
    The fact that the efficiency is so high is not because the companies are boasting, it’s because they’re using an apparently better technique. This might be the biological equivalent of moving from rotary dial phones to smart phones – not something to be wary of, something to be excited about! In the movies, a global crisis always leads to a scientist discovering a miracle solution at the finale which changes the world forever...this may have actually happened.
               
Hasn’t It Been Rushed?
    This is a common criticism and it sounds fair. A vaccine normally takes ten years to make. These ones have been done in ten months. Are they cutting corners?

    One: The reason vaccines normally take ten years isn’t because of design and testing, it’s because nobody funds vaccine science. A research group has to apply for a grant, pitch a reason why they should get it, wait for the decision, get rejected, try again, and then use what little money they’re finally awarded to do meagre research. That can take a decade.
    The shocking thing isn’t that they’ve made these vaccines so fast…it’s the fact that governments are normally so reticent to fund science that it takes ten years to make something which should take less than one. Frankly, if people had started funding coronavirus research back in 2012 when we identified it as a possible risk, the pandemic could have been avoided. Moral of the story: give scientists money. Especially me...Buy my books.

    Two: Actually, we’ve been designing these vaccines for a long time.  The basic science of the mRNA technique was discovered in 1994 (https://openarchive.ki.se/xmlui/handle/10616/43798). All we had to do this year was tailor the existing technology for Covid-19 specifically.
    Furthermore, back in 2011 when the Ebola epidemic was at full throttle, scientists realised that it takes too long to make an emergency vaccine and it was only a matter of time before something worse than Ebola came along (which it has), so they started prepping back then. These vaccines have been in the pipeline for a while. Scientists actually do know what they’re doing..
 
Is It Safe?
    The Pfizer vaccine was tested on 43,000 people and none of them got ill. If you vaccinated one person a day it would take 117 years to reach the number of people in the Pfizer trial.

    Is this a 100% guarantee that nobody anywhere in the world will react badly? Unfortunately, no, that’s impossible in biology. There’s 7.5 billion humans on the planet and someone, somewhere reacts badly to everything. Some people even have an allergy to water (called aguagenic urticaria) which means even water isn’t technically 100% safe.
    This vaccine is so safe however that we don’t even know the percentage of people who will react badly because it’s yet to happen. We can say with confidence though, that the dangers are less than 0.002% (1 person in 43,000). For context that means you’re at least three times more likely to get struck by lightning than react badly to the Pfizer vaccine. Yes, OK, it will probably happen to someone at some point and it will be all over the news, but that's the reality of having a varied human population.
    You might of course feel that a vaccine which is at least 99.998% safe is  too much of a risk and that’s your prerogative. But you have to be consistent. You should also avoid eating any new food because you can’t guarantee you won’t have a reaction to it. You also shouldn't use any cosmetic products like soap, shampoo, toothpaste, perfume or make-up because the FDA doesn't have a single standard or regulated list of safety tests a cosmetic product has to be put through. All of the chemicals in your bathroom and kitchen have been put through less safety checking than the vaccine.
    Also, just a cynical point to throw out there: Pfizer, Moderna, AstraZeneca etc. are all putting themselves on the line. If the vaccines weren’t safe that would be the end of them as companies. It’s not in their financial interests to cut corners or rush.  Do you really think multinational companies worth hundreds of billions are going to jeapordise their own existence by putting an unsafe product out there? Especially a product they know lots of people will take and which will be scrutinised by the media. If the vaccine wasn’t safe – it wouldn’t be on the market.
 
What About Thalidomide?
    This is the go-to example of when science got a medicine wrong. A morning-sickness pill which caused birth defects in babies during the late 1950s and early 1960s. It’s a horror-story for sure, but the thing is, back in the 1950s there were no safety regulations whatsoever! Thalidomide wasn’t even tested on pregnant animals. One of the whole reasons we have safety testing processes now is because of Thalidomide. I get why it’s scary, but refusing a new medicine because of Thalidomide is the equivalent of refusing to drive a car fitted with seatbelts because cars in the 1950s didn't have them.
 
What About Long Term Effects?
    This is perhaps the only reasonable objection to a new medicine.  There’s no way of predicting the future with vaccines so how can we be sure there aren't long-term effects? Well, we can't guarantee anything, but we can compare it to vaccines historically, and the news is very comforting.   
    There are zero cases in medical history of vaccines which were later recalled because it turned out they had negative long term side effects. There was a bit of a scare in 1997 when it was suspected the Influenza H vaccine might lead to an increased risk of diabetes, but this has been roundly disproved since then.
    While there is no way of promising the new vaccine doesn't have long term side-effects, you have to apply a little common sense.  Refusing the vaccine because it might be the first case in history of a vaccine having negative long term effects is like refusing to buy a new flavour of crisps just in case it's the first time crisps turn out to cause lung cancer.

Is The Political Approval Trustworthy?
    The UK’s MHRA has approved the vaccine quickly - have they cut corners? See my earlier point about timescales.  The safety testing for the Pfizer covid vaccine has gone through the same stages as every other vaccine. I suppose it’s a shame that we’re so unfamiliar with government efficiency that when we actually see it, we’re suspicious of it – but this vaccine hasn't been rushed. It's been funded.
    Also, it isn’t in the government’s interest to approve a vaccine in a sloppy fashion.  They know that approving an unsafe vaccine is a one-way ticket to losing the next election. Which means if they’ve given it the thumbs up, it’s as trustworthy as it’s ever going to be.

Why Haven't The Companies Made The Formula Public?
   
This is about business, not conspiracy. A pharmaceutical company needs to have its formula patented and protected so other companies don't copy it. You might think that's pretty cutthroat because it's making money off illness, but if pharmaceutical companies lost money, they wouldn't have enough to keep making medicines when the next pandemic arises. Making profit, if that profit is used to make better medical treatments in future, isn't evil. It's basic economics.
    There's also the fact that you wouldn't want some second-rate independent yahoo with no biochemical training having a go at making the vaccine in his garden shed and infecting his whole neighborhood. If money is going into a company, it means they're held to a high standard (companies who don't deliver first-rate products go bankrupt).
    As much as I like the idea of everyone being able to get the vaccine by the end of December...I don't like the idea of people trying to crudely make it themselves, getting it wrong, and making the whole thing worse. The fact that the companies are protecting their formula is not something to be suspicious of. It's actually reassuring because it means they think they've got something worth protecting. If their vaccine recipe didn't work, they wouldn't be keeping it under lock and key. I promise, not everything to do with money is bad.
Picture
Even Scrooge McDuck was nice to his nephews
Is This Really Happening?
    2020 has been such a kick in the groin for the human race that we almost don't believe the season finale could be uplifting.  We've grown so accustomed to the drudgery of bad news that when something good comes along, we're skeptical.  It's almost as if the entire human race is suffering from a mass case of depression where we've become incapable of feeling hopeful and we doubt hope itself.  But these vaccines are something to sit up and take notice of.  Hope never went away. 
    We're not clear of the danger and the virus is still out there...but this is the beginning of the victory.  The happy ending Hollywood movies have always promised us is genuinely approaching.  This is the gift-horse we need to look in the eye.  This one is real.  The pandemic will end and it's scientists who are going to do it.

The banner phrase on my homepage is also the last sentence for all three of my books.  It's a phrase I've used for years but it's no longer a mantra.  It's now officially a goddamn fact...

                                                           SCIENCE WILL SAVE OUR SPECIES!!!


Image Credits
Marathon Man - gointothestory
Chernobyl Guy - funnyjunk
Netflix Logo - Netlfix
Scrooge McDuck - pinterest

0 Comments

The Trilogy is Complete!

6/22/2020

0 Comments

 
Picture
Dear Future Readers...
    I write to you from the year 2020 and humbly greet thee, digital historians yearning to answer the question "who was tim james?".  By now I'm confident my science books will have become the cornerstone of a new enlightened age for humanity.  You're welcome, by the way. 
    You are no doubt curious how these books came to be and what kind of man I was.  There are many fascinating stories to be told.  You probably want to hear about how I won the Nobel Prize for non-fiction (a category they had to invent just for me), how I achieved world peace through my brief career in break-dancing, or how I was able to successfully end climate change and bring back the dinosaurs through the power of rock music.  Those are interesting stories, my friend, but they will have to wait for another time.  For now, I will humbly tell thee of how I composed the concluding book in my science trilogy, the books which have no doubt shaped your world.

To learn more about the Godlike figure that was tim james and his writing you can also read...

Writing Book 1 (Part I)
Writing Book 1 (Part II)
Writing Book 2
Writing Book 3 (this takes you to the blog you're reading right now...go on...click the link...I dare you) 
Picture
This was an authentic statue of me, built around the year 2019
Fundamentally Different
   
I'll acknowledge, however, that there's a chance my books don't usher in a new dawn of prosperity for the Earth (unlikely) so it might be safer to talk about the past rather than speculate on the future.  Let's instead rewind to July 2019 and the publication of Fundamental: How Quantum and Particle Physics Explain Absolutely Everything (except gravity). 
    My first book, Elemental had been a surprise hit; nobody being more surprised than myself.  I mean, I once wrote a play in which the hero and villain square off at the end by dueling with rubber chickens, and I once went to school wearing a three piece suit and a gas mask for fun.  I'm not the guy who deserves to be positively reviewed in The Wall Street Journal.  And yet here we are.
    There was a lot of pressure on my second book to do as well as the first. Thankfully, Fundamental did OK...although I may have over-estimated just how excited everyone else gets about quantum mechanics.  Don't get me wrong, Fundamental did respectably (the audio-book was briefly the #1 non-fiction title in the UK) but the overwhelming critical and financial success of Elemental was not repeated. 
    I don't think I'm supposed to admit that publicly though.  I'm supposed to project an air of constant sales success in order to seduce publishers, so my agent will probably kill me for writing this.  But there you have it...I'm being honest.  Elemental was a hit, Fundamental did alright-ish.
    I think the important lesson I've learned is that as a writer you're writing for the readers, not yourself.  Readers give writers their purpose and if you’re not concerned with keeping them happy, your work isn't going to do well.  With Fundamental, I might have lost sight of that. 
    Of course I wanted my readers to enjoy the book, but I think deep down I was writing a labour of love and my inner compass became too self-centered.  This is a necessary hurdle all writers have to clear however, because you have to get the "self-indulgent passion project" out of your system.  I'd wanted to write a book about quantum physics since I was 14 so Fundamental really was something I put my heart into.  But now I've done that, I can get back to writing for other people...which is who it should be about anyway.
Picture
Because not every passion project deserves to be made...
The Difficult Third Act
     I wanted book 3 to deal with a topic everyone gets excited about.  In my mind it was some kind of weird penance for doing the introspective quantum book - I needed to write something which would appeal to anyone with even the most casual interest in science.  Something children and adults are both enthused by.  Something every breathing human wants to learn about.  And really, in science, there's only one topic which fits that description: the economic habits of off-shore Vietnamese shrimp farmers.  Or space.   
    The way this book evolved was quite distinct from the previous two.  With Elemental I was a hungry young fighter eager to prove myself in the ring of popular science literature.  I had to persuade publishers to take a chance on me, which took a year of pitch-meetings and proposals before one of them decided to give me a shot.  Book one was a constant battle because I was a nobody and publishers, understandably, don't take chances on a nobody.  Basically I was Sylvester Stallone in Rocky...only with more muscles.
    With Fundamental it was more about them giving me free reign and asking "what else you got?"  I had more control to do the writing exactly the way I wanted.  I picked the topic, I chose the chapter outlines and wrote it effectively without interference.  This time I was like Orson Welles directing Citizen Kane...only with more muscles.
    The third book happened a different way altogether.  I was toying with the idea of a space book because that seemed like the "big topic" everyone loves.  Then, by sheer good fortune, my publisher approached me and asked if I would be interested in writing a space book anyway.  They already had one in the pipeline with a different author along the lines of "20 cool things about space you never learned in school" but it fell through, so they asked if I would be interested in taking over the project.  It seemed like fate was urging me forward.  So I put my shrimp-farmer book on hold and started planning.
Picture
Note to self: Idea for 4th book title "Shrimpemental"
"Make Sure It's Weird"
    Perhaps the biggest irony of writing Fundamental was that even though it was a passion-project it was actually more stressful than the first one.  Not only was I putting myself under pressure to get it perfect, quantum physics isn't exactly the easiest topic to write about.  It was a book I wrote through periods of self-doubt and confusion.  The result is something I'm very proud of, but I was determined to have more fun with book three.
    My publisher only had one real direction..."Make sure it's weird".  They wanted the crazy bits of space, so I committed myself to focusing on the oddest oddities I could.  It's not a book about the history of NASA, nor is it a book about astronomical techniques.  It's a book about black holes, wormholes, white holes, Hawking radiation, the big bang, alien life, area 51, dark matter, dark energy, faster than light travel and higher dimensions of reality.  It's a book about extremes.
    I also returned to the same structural technique I'd used for Elemental.  With that book, each chapter is self-contained so you can dip in and out.  With Fundamental I was telling a chronological narrative of how quantum physics came to be, complete with explanations of the discoveries along the way.  This book was a return to the original format.  Each chapter is a self-contained collection of fun facts and stories on a particular theme.  It's a much more light-hearted read and it's much easier to digest (except for the chapter where I talk about string theory and how the Universe might be a hologram). 
    I made it my mission to ensure every page has a weird fact or story on it, so you can't help but stop at any point and find something that will make you go "what??"  Space is such a big topic because...well...I don't need to finish that joke, do I?  It's got literally everything in it so I could write about whatever I wanted, as long as it was weird.  And I had a lot more fun.
    If you want freaky numbers, this book has you covered.  If you want analyses of sci-fi movies, this book has you covered.  If you want clear descriptions of modern cosmology and theoretical physics, once again this book has you covered.  The whole thing is really me getting back to the good stuff...playing around in the sandbox of science and going in whatever direction I feel like.
Picture
Featured in this picture...my carpet!
And So It Is Finished
    The American author C.E. Lombardi once said all stories "keep the same form: a beginning, a muddle, and an end."  He's playing on the classic three-part structure stories are supposed to contain (although frankly I've yet to meet an actual writer who sticks to it).  But the quotation really resonates with me. 
    You start out at the beginning of a journey with a ton of enthusiasm and wide-eyed naivety.  Then you go through the tricky era where you perhaps lose your way a little and get confused about what you're doing.  Then finally you emerge with confidence and wisdom, ready to return to your original goals but knowing a lot more about how things work.  And that's how it's been.
    With my first book I was just so excited to be writing one I didn't think too much about what I was doing.  With my second I actually did precisely that...I thought too much...and crafted a book of intensity and obsession.  Now, with the final installment, I decided to go Thor Ragnarok and write something which is all shades of insane, but with a little more technical skill than the first installment.  If I'm lucky I've managed to retain the simplistic fun of Elemental but add the control of language I learned for Fundamental.  That's my hope at least.  Now it's up to the readers.
   People have suggested a few different names for this series.  Perhaps The AL Trilogy seeing as each title ends with "al".  Perhaps the Science Will Save Our Species trilogy because that's the sentence I use to summarise all three (#spoiler alert)?  But actually, in my head, I call them something else... 
    In my head I refer to them as The Trousers Trilogy.  The reason is that all three contain a ridiculous anecdote about my trousers and how stupid I can be in everyday life.  And that's how I feel when I look back at this journey.  I'm really just a buffoon who got a chance to write some books.  Obviously I want Astronomical to be a smash hit because I'm proud of it, but really I'm just grateful to be given these outrageous opportunities.
    I'm the guy who wrote a stage play in which the lead characters duel with rubber chickens.  I'm the guy who wore a gas mask and a suit to school.  I'm not the next Isaac Asimov or Stephen Hawking...but I love writing and I love explaining things.  The fact I get to do that to such a big audience is something I'm grateful for and won't take for granted. 
    In reality, I'm not going to usher in a new dawn of civilization and my books won't change the world, but I get the opportunity to teach people interesting things and hopefully make them chuckle.  That's good enough for me. Thank  you to all my readers out there for your support (and let's face it, your money).  I hope you enjoy Astronomical.  It will be published in the UK in paperback, e-book and audiobook on the 16th July.

Live long and prosper!
Picture
What a statue of me would actually look like
You can buy: Astronomical Here

You can buy: Fundamental Here

You can buy: Elemental Here

Image Credits
Statue of me/Zeus: Septemberveillesdumonde
Star Wars: cropped from imdb
Shrimp farmers: psmag
0 Comments

Coronavirus, Vaccinations and Llamas

4/27/2020

1 Comment

 
Picture
I promise I'm going somewhere with this...
Best Laid Plans...
    About a month ago, I wrote a blog about "the emerging threat of Coronavirus".  Back then it wasn't a pandemic and the UK death toll stood at a grand total of two.  This is probably the most flagrant understatement in the history of science writing but...things have changed since then.
    I'm not going to write a blog about what's going on in the world right now because you're living through the same pandemic I am - you know exactly what's going on.  Instead, I'm going to write about the next steps science will be taking.  The businessmen and politicians are all working around the assumption that we'll have a vaccine ready in 18 months.  How realistic is that projection?  What’s taking them so long?  And what do we do if we can’t find one?  Let’s take a tour of the frontline on our war against SARS-Cov2...
Picture
What you got, son?!
“Immune” doesn’t mean immune
    The human immune system is a network of organs, glands, chemicals and bio-machines which combat infections and keep records of them for future use.  It’s the elegant product of three billion years' worth of evolution and probably your most valuable possession (and I say that as a man who owns part of the original 35-mm print of Return of the Jedi).
    The basic idea is that when your body first encounters a harmful particle it slowly manufactures things called “antibodies” which act like flags that stick to the particle and tell other cells to eat it.  Once the threat has been neutralised, those antibodies hang around in your bloodstream - sometimes for the rest of your life - which means if you come across the same infection later, you're prepped and ready.  Your blood is like a liquid fingerprint of every disease you’ve ever defeated and this is what we mean by “immunity”.
    Really, it’s a misleading word because it doesn’t mean your body is bullet proof or that the virus can't get inside you.  You can still contract it, it's just that you've had a dress rehearsal and your immune system knows all the moves.  Your best bet at defeating a virus is therefore to have already had it.  But how do you make sure you’ve already had a dangerous virus without being killed the first time?  This is where vaccines come in.
    When you inject someone with a vaccine what you’re actually doing is injecting them with a dead version of the virus. Technically "dead" isn’t a useful word either because viruses aren’t living things, but there just aren’t any words to describe killing something which isn't alive.  Frankly, I wish more zombie movies would focus on these important linguistic difficulties.
    Ambiguous language aside, a vaccine is a “dead” version of a virus which your body overcomes, producing antibodies in preparation for a future strike.  When the real, living virus comes along, your body is prepared and can do its work ten times faster.  That’s why vaccines are important against viruses.  They’re not a “cure” by any means; it’s still the immune system we’re counting on - vaccines just give the immune system a rigorous training session, like practising martial arts on a dummy before tackling a live opponent.
Picture
Rare photograph of Edward Jenner from the early 1300s
Why Does It Take So Long To Make A Vaccine?
 
Step 1 - Make Sure It’s Actually a Vaccine
    Getting a vaccine right is difficult.  If you break the virus down too much it won’t trigger the body’s immune response and you might as well be injecting them with water.  You’ll have invented the homeopathic vaccine and will no doubt get a homeopathic Nobel prize (it’s an empty box) but you’ve just wasted everyone’s time.  
    If you go too far the other way and inject someone with a virus that’s still potent then congratulations, you’ve given everyone Covid-19.  No Nobel prize for this either.  Obviously.
You have to get a version of the virus which is dead enough to be safe, but harmful enough for your immune system to pounce.  That takes a while.
    Then you need to make sure the virus survives transportation from the factory to the needle you stick in someone's arm.  It sounds weird but you have to make sure your solution contains preservatives to look after the virus.  I know.  You're actually protecting a zombie version of the thing which is causing all the problems.  But...you know...keep your friends close and your enemies closer etc.
    Once you have that sorted, you also need antibiotics because bacteria will get into the mixture during production, transportation and injection.  And finally you need to make sure all those substances don’t interfere with each other and de-stabilise the cocktail.  Then, after a few months of testing in petri dishes and computer simulations, you'll have a workable vaccine candidate so it's time to move on to...
 
Step 2 - The Ethically Tricky Bit
    It would be lovely if we could simulate a fully detailed human body with all its interlocking systems on a computer.  But I’m afraid we’re about a century away from that kind of technology, so if we want to test a vaccine there is no viable substitute for trials on living organisms.  The other problem is that there aren't enough human volunteers for all the thousands of trials and retrials needed, so the only option is to use animals with similar metabolisms to ours...mice, rats, pigs and monkeys usually.  This is a tough dilemma but there's no way around it.  It's animal testing or no vaccine.  Simple as that.
    Now, there are plenty of animal-rights activists who would argue (quite fairly) that the answer to the conundrum is simple: don’t develop the vaccine.  They would argue that we don’t have the right to save our own skin at the expense of other living creatures and we just have to let the virus do its work.  I’m not going to get into my personal stance on the issue, I’m just going to state the facts as they are: if you want the vaccine to protect yourself and your children, it's going to come at the expense of animal testing.  Which also takes time.
 
Step 3 - Does It Work?
    Finally, after lots of trial and error, you're ready to carry out human experiments.  The first round is mostly to make sure you don’t just make the person more sick.  This can still go wrong because something that looks safe in a petri-dish and doesn’t harm a single mouse or monkey can still cause damage to the first humans who try it.  Animals are close proxies, but there are always unforeseen complications.
    The second round of trials is when you start looking to see what actually works.  And the only way to do this is to give people the vaccine, wait for their body to produce the antibodies and then (sharp intake of breath) expose them to the real coronavirus and see how they cope.  If they don't, then it's back to the lab.  If they seem fine then you've got something promising and you can move on to bigger test groups.
    This whole process moves at a turtle's pace because you don’t want to rush a single step.  It’s literally life and death science, so cutting corners isn’t an option.  18 months is a moderate estimate but the alternative is to rush things and get something which either doesn't work or is dangerous.  What we need from the world's biologists is a vaccine.  What they need from us is patience.  What they don't need right now is misinformation, sarcastic or not.
Picture
Here is an unrelated picture of a man
There May Be Trouble Ahead...But While There's Moonlight...
    A few days ago the WHO released a statement discouraging countries from issuing “immunity passports” for people who have recovered.  Their statement said “there is no evidence yet that people who have had Covid-19 will not get a second infection.”  That sounds scary because if our  bodies don't develop immunity to coronavirus, a vaccine won’t be possible.  However, a little context is important.  
    They aren’t saying “nobody develops immunity to coronavirus” they’re just saying it’s too early to know how immune we are.  Some viruses are extremely difficult to catch a second time e.g. chickenpox, whereas some viruses mutate so rapidly you can’t build immunity e.g. Hepatitus C.  We don’t know where coronavirus fits on this scale so the WHO is merely saying it’s early days.  Issuing “immunity passports” would be unwise when we don’t know how susceptible people might be to a second infection.  If you give everyone a false sense of immunity you’re putting them directly at risk.
    One of the studies currently being misquoted by a lot of fear-mongers is a paper by Jinghe Huang and Fan Wu from Fudan University, which found that 30% of people who had coronavirus didn’t develop antibodies.  That sounds worrying because it suggests a third of all people can get reinfected, but once again, context is queen.
    Firstly, the sample group was 175 people who only had mild cases of Covid-19 in the first place.  Secondly, most of the people who didn’t develop antibodies were under 40 i.e. people who don’t show symptoms in the first place...which is absolutely what you’d expect.  Most symptoms are the result of you producing antibodies and since young people often don’t present symptoms for Covid-19 (we’ve known that since the beginning) the fact they don’t develop antibodies is nothing new.
    The question yet to be answered is how symptom-less people were still able to recover without antibodies.  The authors of the paper make it very clear that these antibody-free people have still defeated the virus, they're just using one of the immune system's other tricks and we don't know what it is.
    However, let’s be pessimistic and assume this single paper is representative of the global population.  That would mean 70% of people will have reasonable immunity to Covid-19 after a vaccine.  That’s not the best we could have hoped for, but it’s not a disaster .  It means we can stem the tide of the virus but it’s not quite high enough for “immunity passports” to be issued.
    For a helpful comparison, consider the influenza virus which mutates so rapidly people need booster shots every twelve months to stay safe from the latest strain.  The seasonal flu vaccine is about 67% effective and that’s enough to stop it becoming a pandemic.  Flu is, instead, an “endemic” virus which means it’s a permanent feature of the biological landscape and we just have to accept it being a part of life.  
    Given the speed at which coronaviruses mutate, I'd say there's a pretty good chance it will go the same way and a single one-shot vaccine is unlikely.  Never say never, but if I were a betting man I'd say it's more probable the coronavirus vaccine will become part of our annual vaccine regime along with the seasonal flu shot.  A nuisance, but something we're just going to have to accept.
Picture
Like the movies of Seth Rogen
 On The Plus Side...
    You don’t hear much from polio these days, or cholera, or tuberculosis, or leprosy, or bubonic plague, or spanish flu, or bird flu, or swine flu, or ebola or zika and the list goes on.  These diseases which once threatened the world are still very much out there.  In fact we’ve only ever eradicated one disease from nature (smallpox).  But the reason these illnesses are no longer holding the world ransom is because we’re a clever species and we solve problems.  Hell, even the AIDS epidemic is on the decline and that’s a disease which is impossible to vaccinate against.  Progress is sometimes slow but we always, always win these fights.   
    When it comes to dealing with coronavirus we have the world’s smartest people on our side and right now they have unlimited government support and money...which they've never had before.  So think about it.  We've been able to beat all these other diseases on a global scale without public endorsement and funds.  Now we have that too, we can stack the deck heavily in our favour.  At the time of writing there are at least 70 major vaccine research projects underway globally to tackle SARS-Cov2 and there are some encouraging results already.  

There’s a group led by Chuan Qin at the Peking Union Medical College in Beijing who have already found a vaccine which has been trialled on monkeys and given every single one of them perfect immunity to coronavirus.  

There’s a group led by Michael Farzan at the Scripps Research Institute in Florida who have successfully identified a vaccine which causes rats to produce huge amounts of SARS-Cov2 antibodies.

There’s a group led by Haitao Yang at Shanghai Tech University in Shanghai which have found a possible medicine which attacks one of the proteins in the coronavirus molecule, meaning it might act as a medicine rather than a vaccine and it seems to work on all strains, meaning it would be a mutation-proof cure.

And then my absolute favourite...A team of researchers at the University of Texas led by Bert Schepens have found that it’s possible to extract antibodies from llamas (who seem to have good coronavirus immunity) and use them to prevent infections in humans!  Yeah, that’s right.  Forget drinking bleach.  Llamas might be our secret weapon in the coronavirus battle.  Llama power!
Picture
You would not believe how many image search results you get from "Super llama" Seriously...try it
Welcome to the Coronapocalypse  
    I’ve been using the word “coronapocalypse” a lot recently.  I think people assume I’m making some sort of dark joke, but I’m not at all.  The word apocalypse doesn’t mean end of the world.  It actually means "uncovering" or "revealing" and in a Biblical sense the word is always referring to a transition from one way of living to another.  An apocalypse isn't an end.  It's a change.  And we're living through one right now.
    To quote the novelist and political activist Arundhati Roy "Our minds are still racing back and forth longing for a return to 'normality', trying to stitch our future to our past and refusing to acknowledge the rupture.  But the rupture exists...Nothing could be worse than a return to normality.  Historically, pandemics have forced humans to break with the past and imagine their world anew.  This one is no different.  It is a portal, a gateway between one world and the next.  We can choose to walk through it, dragging the carcasses of our prejudice and hatred, our avarice, our data banks and dead ideas...or we can walk through lightly, with little luggage, ready to imagine another world.  And ready to fight for it."
   
I mean look at what's happening.  Name me one country which hasn't suddenly realised how valuable its healthcare system is.  Name me one country which isn't going to take a long hard look at its own systems of politics, finances and welfare and ask the question "is this really what we want to go back to?"  People are suddenly remembering the importance of care-workers, volunteers at retirement homes, delivery drivers, bin men, doctors, nurses, teachers (woo!), the police and all the other people keeping things going.
    I recently re-watched the 2011 Steven Soderbergh movie Contagion.  Nine years ago that film looked at what might happen if a bat-based virus from China caused a pandemic.  A lot of it is eerily prophetic but there's one thing it gets very wrong.  The film depicts a complete collapse of society with riots in pharmacies, looting of grocery stores, garbage piling up in streets and shootings in suburbs.  We haven't seen that.  What we've seen is something entirely different.   
    On my way to work I see rainbows in windows and hand-made posters thanking the NHS.  I see people in supermarkets laughing with embarrassment when they turn a corner and end up less than two meters from someone.  People are stepping out of their houses in the evening to nationally applaud nurses and doctors, hundreds of thousands of people volunteer to deliver care packages to the elderly.  In my school science department people are holding a weekly quiz - we never did that before. 
    I’ve heard from long-lost University friends reaching out after a decade to ask how I’m doing.  I'm exchanging silly jokes with work colleagues I wouldn't normally talk to.  And I’m talking to my dad on the phone more.  He’s an NHS worker at one of the largest coronavirus field hospitals in the country and I’m damn proud of him.
    The older machines of society have come off the rails.  Coronavirus will possibly become endemic and we’ll have to start looking out for each other as a regular thing rather than as a 12 week exception to the norm.  It’s going to force us to be a little more community-minded because now when you walk past someone on the street you're thinking the same thing they are "oh I'll bet they're going for their daily exercise during the pandemic."  How remarkable is that to have this hive-mind telepathy where we're all thinking about the same thing.
    We're making sacrifices to protect society and we're thinking about people less fortunate than ourselves.  Yes I know the cynics will say "how awful that it took a pandemic to make us be nice to each other and the environment" but what does it matter?  We're doing it aren't we?
    This is the coronapocalypse and we’ll emerge a slightly wiser, more humble species.  I’m not saying the world will suddenly tick along like magic.  There’s going to be fallout and struggle and fear and pain for a while.  But we’re the product of three billion years of evolution and we’re smart.  Viruses don't end us, they teach us.

We're not going to get around this pandemic. We’re going to get through it.
Picture

Image Credits
The Llama: hrdailyadvisor
Boxing Match edited from: Chinadaily
Martial Arts Dummy: amazon
Trump: Cosmopolitan
Seth Rogen: Independent
Super Llama: wattpad
Science vs the Virus: Chinadaily
1 Comment

So I guess I'm writing about Coronavirus...

3/7/2020

4 Comments

 
Picture
NB: This article was written on 7th March 2020 when the number of cases and confirmed deaths was lower than it is today.  I have chosen to leave the article unedited however, so you can read it in its original form.  The only significant change is that it is now believed wearing masks offers some reasonable protection.

Panic Pandemic

    I've been holding back on writing a Coronavirus article for three main reasons.  First, I don't want to get sucked into the circus because there's already enough people writing about it and it would seem gimmicky to join in.  Second, solid information on Coronavirus is pretty sparse, so I figured there wouldn't be much to say beyond speculation.  Third, I don't think I'm actually very good at writing about serious stuff - I'm much better at making Batman jokes than tackling something as unpleasant as a virus that kills people. 
    However, it occurred to me that a disease outbreak is one of those times when everybody actually wants to get engaged with science and seeing as how both my jobs (teacher and author) revolve around teaching science, it would be pretty dumb to stay silent at a time like this.  It's also just about reaching the point where reliable information is beginning to crystalise so, in the name of cheerful weekend blogging, here's my two cents on Coronavirus.
Picture
Not the time to be doing this...
Don't Tell Me What it Is...Tell Me How To Survive!
    Most articles and blogs start by explaining what the virus is.  My hunch is that most people aren't reading because they want to learn about virology however, it's because they want to know whether they and their loved ones are at risk, which is totally understandable.  If an asteroid was heading for Earth people wouldn't care about its orbital mechanics...they'd just want to know if we've contacted Bruce Willis yet.  So I'll give a cursory summary of the biology, but feel free to skip this section if you want.
    A virus is a semi-living box of chemicals that can damage the cells of an organism it infects.  Because viruses aren't exactly living things, you can't "kill" them with antiobiotics so your main defence is to rely on your rather amazing immune system.  Antiviral medications do exist for certain viruses but there aren't any blanket "kills 99% of viruses" medicines out there - viruses don't work the same way bacteria do. 
    Obviously you can and should give your white blood cells a thorough practice run against a virus by getting yourself vaccinated, but typically if you contract a virus you have to just wait it out and let your body go to work.
    Coronaviruses are a group of viruses we've known about since the 1960s and while most of them aren't harmful, there are a few versions which are.  Some Coronaviruses, like NL63 and HKU1 cause common colds, but some strains are way more problematic.  The two most dangerous are SARS and the one that's all over the news right now, SARS-Cov2 (Severe Acute Respiratory Syndrome Coronavirus 2) which causes the illness COVID-19 (Corona Virus Disease 2019). 
    We don't know where the original particle of SARS-Cov2 came from, and we probably never will, but analysing its DNA has shown that it's 90% similar to a version previously confined to the bat population.  This means there's a good chance SARS-Cov2 started out as a bat virus but then infected another animal which wound up in the Huanan Seafood Market in Wuhan, China, around December 2019. 
    Oh and if you're curious, it gets its name from the fact that under a microscope the virus particles look like they have little crowns around them and the Latin for crown is corona (you know how much scientists love translating words into Latin).  For the rest of the blog, I'll use the word "Coronavirus" to refer specifically to the one that's currently causing all the problems.   
Picture
What Does it Do To You?
   
Coronavirus particles mostly cause damage to the cells in your respiratory system and when your immune system fights back the internal battle is what generates the most common symptoms...

1) Fever (your immune system produces a bunch of chemicals called pyrogens which tell the brain to increase cell production - like making more virus fighting soldiers - which causes things to heat up)

2) Cough (obviously...it's a virus in your lungs)

3) Tiredness and fatigue (your immune system uses up your body's energy to destroy the infection so you don't have much left over for other stuff)

4) A bunch of phlegm (a byproduct of your immune system breaking down the virus - like an icky slurry of dead white blood cells and burst virus particles)

5) Shortness of breath (obviously...it's a virus in your lungs)

6) Sore throat (obviously...your throat is attached to your lungs)

    As you can see from this list, the symptoms of a Coronavirus infection are very similar to other viral infections because your body only has a limited number of ways to tell you something is wrong.  In its most rare and severe cases however, Coronavirus can cause major damage to your lungs and the Greek for "lung disease" is pneumonia (scientists love Greek names too).
    It's potentially confusing that we don't just call pneumonia "bad lung problem" because I've heard a bunch of people getting muddled and thinking it's a separate virus, but pneumonia is just the name of the symptom.  About 4 million people die every year from bacterial or viral pneumonia and Coronavirus is the latest thing which can cause it.
Picture
This is actually what a cough looks like
How Dangerous Is It?
   
This is a complicated question to answer because biology isn't a straightforward cause=effect science.  There are no absolutes in medicine and what works for one body will not necessarily work for another.  Biology works statistically and, unfortunately, statistics is something we're usually quite bad at as a species.  The human brain is built for straightforward calculations so when you get something that requires probability, risk-benefit analysis, overlapping categories and middle-of-the-road conclusions we tend to fall short.
    So far the response to Coronavirus has either been to get into hysterics and panic buy food from supermarkets or to dismiss it as "a bunch of hype that'll blow over in a few weeks like Swine flue, Bird flu, Ebola and Zika".  The reality is that Coronavirus is actually somewhere in between these two extremes and the danger depends on a lot of factors.  Getting worked up and spraying your armchair with bleach is probably going too far, but ignoring the whole thing isn't helpful either.  Like I said, it's one of those awkward medium-ground things that depends on context.

Right, But Seriously...How Dangerous Is It? 
    When you're talking about the danger of an infectious disease there are two main things you need to take into account.  One is called the R0 value (pronounced R- naught) and one is the mortality rate.

R0
    R0 is a measure of how easily an infection spreads i.e. how contagious it is.  There are lots of things which go into calculating it, such as how long the virus stays in the body before symptoms show, how long an infection lasts, how easily it can be transferred etc. but roughly speaking the higher the R0 number, the more contagious. 

An R0 value of less than 1 means it's quite hard to contract the disease.

An R0 value of exactly 1 means every infected person will infect 1 other.

An R0 value greater than 1 means each infected person infects several others. 

    When the R0 value is greater than 1 it means each person who catches it will infect several others, leading to what's called an epidemic or an outbreak.  The number of cases will grow at a faster and faster rate but it's important to note that R0 is geographically dependent.  For instance, the R0 value in Antarctica is going to be a lot lower than it would in Manila (the densest city in the world) because there are less people to infect.  As a result, R0 values are usually given as a range.  The more densely populated your surroundings, the closer you'll be to the higher figure.  Here are some common R0 values for comparison.

Measles                12 - 18
Chickenpox          10 - 12
Polio                      5 - 7
HIV                        2 - 5
Seasonal Flu         2 - 3
Ebola                     1.5 - 2.5
Swine Flu              1.46 - 1.48

    Coronavirus has an R0 of 1.4 - 3.8 so if you're living in a really densely populated place like the Hubei province of China, Coronavirus will spread faster than the flu, but if you're living in the Scottish highlands it's probably going to spread slower than Swine flu.
    If it gets to the point where the outbreak is found in the majority of countries across the world, the World Health Organisation will declare it a "pandemic".  That doesn't mean the majority of people have got it, it just means the majority of countries have at least one confirmed case. 
    At the moment it's hard to predict whether Coronavirus will become a pandemic but I'm going to be straight - it does seem a distinct possibility.  One of the problems is that because the symptoms aren't too dissimilar to a lot of other diseases a lot of people contract it and don't even realise, shrugging it off as "a cough".  That makes it difficult to catch because if we quarantined everyone who had a cough we'd be quarantining tens of millions of people. 
    With the SARS outbreak of 2003 we were able to contain the infection because the symptoms and the transmission went hand in hand, but Coronavirus is sneaky and people can be carrying it around without showing any signs. 
    I'm not wanting to be all doom-and-gloom and it's obviously possible that we've identified it early enough to stop further spread...but I want to be realistic.  There is a very real chance Coronavirus is going to keep spreading and we might end up with a pandemic.

Mortality Rate
   
This is the really grim bit.  Of the people who get Coronavirus, how many end up with a pneumonia so serious it shuts down their ability to breathe?  The answer, again, depends on who you are and where you live.  If we take something like seasonal flu for instance, that has a mortality rate of 0.1% in the US.  In Nigeria however it's the number one cause of death.  Likewise, something like Ebola has a mortality rate of 90% but it largely affects areas with poor healthcare and widespread poverty.
    The World Health Organisation official number for Coronavirus right now is 3.4% but that statistic can be misrepresented to the point of not being useful.  The mortality rate in China is currently 3.8% but that's a country with a dense population and the highest rate of smoking in the world (around 28% of the population). 
    By contrast, the mortality rate in the UK is, at the time of writing, 2.4%.  That raw percentage makes the death rate in Britain seem almost as bad as that of China.  But in fact only two people in the UK have died from Coronavirus, one of whom had an underlying illness and one of whom was 88.  Giving a percentage when there's such a small number of cases is probably not the best way of expressing the data.
    The really interesting statistic to my mind is that of South Korea where there are over 6,500 confirmed cases, but a 0.6% mortality rate.  The explanation is currently not known.  It could be that South Korea is doing something differently or it could be a statistical blip.  Some countries are, by pure chance, going to have less deaths than others.  We don't know at the moment. 
    There's also the fact that the WHO 3.4% number is based on the number of reported cases.  But because a lot of people get Coronavirus and don't even realise, they never report it so the actual number of cases could be much higher, meaning the mortality rate would be a lot less. 
    The mortality rate of Coronavirus could in truth be lower than 3.4% but that's still not brilliant.  The last time we saw something like this it was Spanish flu in 1918 which had an R0 value of 2-3 and a mortality rate of 3% (very comparable) but because we didn't contain the spread effectively, a third of the world's population contracted it and about 30 million people died.  So although those numbers might seem quite low, if we ignore Coronavirus and don't take it seriously, we could be facing a major problem.

You're Fine But Your Neighbour Might Not Be
   As I said earlier, my gut feeling is that when people read about Coronavirus they either want to be reassured that they and their families are safe or they want to be warned if they are in danger and told what precautions to take.  The tricky bit is therefore how we package the answer when people ask if they're at risk. 
    If we tell people the short answer: "the vast majority of people who get Coronavirus are going to be absolutely fine" then that is completely accurate but it means they will mentally file Coronavirus under the nothing to worry about category in their brain.  That's understandable because that's how our brains work - if something is not an immediate threat, our brain relaxes and stops taking it seriously.  But we need to be more sophisticated about how we approach Coronavirus.  Here's why...
    We currently don't have a vaccine for Coronavirus and developing one could take up to a year or longer.  That means between now and then if you contract it, you're basically on your own.  Most people have functioning immune systems so their body will take care of it just fine, but people who don't have good immune systems are at risk.  The WHO 3.4% mortality rate is an average of young and old people but if you're 70-79 the mortality rate jumps to 8% and if you're 80 or over it jumps to 15%.  That's significantly worse than seasonal flu.
    Most of the people asking me abut Coronavirus are teenagers and the answer for them is that they're in the lowest risk category (0.2% mortality rate).  So for most of my readers you don't need to be alarmed even if it does get to pandemic stage.  If you contract it you'll most likely have a cough for a few days but then your body will work its magic and you'll feel fine again.  But you could carry the infection and transfer it to your grandparents and then it could be a lot more serious.
    It's rarely a good idea to express a complicated idea in a simple soundbite of a few sentences but on the other hand, people remember succinct answers better than essays.  So, for what it's worth, from a scientist's perspective this is roughly the deal with Coronavirus...

    As a general rule, healthy and young people are not at serious risk, so you probably don't need to live in constant fear, HOWEVER people with immune problems and the elderly are at risk so we need to take precautions for their sake. 

    I know that's not a simple answer, but I'm afraid Science is sometimes not simple.  It does mean that when you hear all the scary stuff on the news, you personally don't need to be fretting too much.  But turning a blind eye and shrugging the whole thing off is not the way to go either.  It's better to err on the side of caution when it comes to something like this because even if you aren't at risk yourself, other people around you could be.
Picture
Seriously
Quick and Important Coronavirus Facts...

How Is It Transmitted: We think it's mostly transmitted via what are called "respiratory droplets" which basically means moisture from your lungs.  Coughing, sneezing etc. the same as most respiratory infections.

How to Keep Safe: The same thing you would do in regard to any viral outbreak.  Don't be around people who are coughing and sneezing all over the place, wash your hands with 60-95% alcohol based hand sanitiser or if this isn't an option for you (religious reasons might prevent you for instance) wash your hands regularly with warm water and soap for about 20 seconds minimum - that's the time it takes to sing Happy Birthday twice.  Also, if you see people coughing and sneezing openly rather than into a tissue they dispose of etc....politely call them out on it.  We're all in this together and we really can slow it down.

Face Masks: Wearing a face mask doesn't do much to protect you I'm afraid.  However if you've got Coronavirus, wearing one will help stop you spreading it to other people.  This sounds a bit of a contradiction but it's because if you're coughing and sneezing, the mask will keep most of those droplets inside, but if it's already out in the air, the mask won't protect you from breathing it in.  They also do have the slight advantage of stopping you from touching your own mouth.  There are specially designed respirators called N95s which can protect you, but right now they are being given to healthcare professionals on Coronavirus wards...which seems pretty fair.

Can Children Get It?: Yes, as far as we can tell they are just as likely to catch the virus as anyone else.  They don't seem to be at risk of symptoms however and there aren't any deaths reported for under tens anywhere in the world, but they can carry the disease and spread it.

What About Pets? This one is unclear.  There are a few stories of people's dogs getting it in China but I'm afraid it's hard to know how transmissible it is.

I heard it was designed artificially in a lab by the government as a secret population control device: This isn't the website you're looking for.
Picture
Natural News might be more your thing...
The Future
    In all likelihood, things are going to get worse before they get better.  That's the way viral outbreaks always happen though.  Because Coronavirus has a high-ish R0 value and in many people the symptoms are too mild for them to realise they need to self-isolate etc. it will spread fast. 
    So what happens next?  Well, there are a few possible outcomes and it all depends on how we and our governments respond to the threat.   The worst case scenario is that if we get to the point where 50% of the population contract it, half the world will all develop a natural immunity.  Once that happens, the virus will slow down because there will be less people to infect and the R0 will drop.  If the virus goes unchecked and we never develop a treatment this is what will ultimately happen.  We'll develop a herd immunity and the virus will become endemic - but not after several million people die. 
    Slightly more optimistic is that the virus will mutate to the point of becoming less dangerous.  This sounds counterintuitive but viruses are sort of self-defeating sometimes.  If they're super virulent (I know it seems like I'm making a pun there, but the adjective happens to stem from the thing I'm talking about) then they can kill the host, but if they kill the host the virus can't keep spreading.  That means ironically, the more deadly a virus is, usually the quicker it kills itself off.
    If we're extremely lucky, it's possible that when the summer rolls around the virus will slow down.  You might have heard Donald Trump saying the Coronavirus would die off when the weather got warmer and actually, he's not wrong - that really could happen.  Some viruses  don't transmit as well in warmer, dryer conditions and become seasonal, like the flu.  However, there currently isn't any indication of whether Coronavirus will do that or not.  It could just as easily keep going through the summer right on through.  But if it does slow down, that will buy us time to develop a much-needed vaccine or anti-viral medication.
  
Ultimately, Science Will Win
    One thing keeps coming up again and again when you read about Coronavirus, which is a comparison to other pandemics of the past.  And the important thing is that we keep winning.  You don't hear much from polio these days, or leprosy, or bubonic plague.  But all those diseases still exist.  It's just that we've become so darn good at science-ing that they don't get a foothold any more.  The last time we faced a pandemic that could kill people like this it was Spanish flu, and that was a hundred years ago.  This time we're armed with knowledge of DNA, techniques like CRISPR and the blessed internet to share information across the globe. 
    Every day, Science is in a stronger position than it was the day before because knowledge only increases.  It's like entropy - the value can go up, never down.  We have literally never been in a better position to handle and combat a viral outbreak.  Every new case adds data to our understanding and there are legions of Biologists accross the planet working round the clock to develop a vaccine or a medicine that will stamp it out. 
    Yes, it presents a problem and yes there could be rough times ahead and, yes, there will be more deaths.  But Coronavirus will not bring about the apocalypse.

The three books I've written all finish with the same sentence.  It's also the sentence I have on my homepage. I feel like it's important to remember now more than ever something very important:

Science will save our species


Image Credits
Infection map: BBC
Head in sand: Virgin
Coronavirus: Wikipedia
Cough: Sciencealert
Obi Wan: Star Wars

4 Comments

Going Vegan  - What Does The Science Actually Say?

2/1/2020

0 Comments

 
Picture
Quick, Frank, do something sciencey for the photographer!
The Only Way is Ethics
    When I was a wee young lad the debate over meat-eating was about the morality of whether it's OK to kill other animals for food.  It’s an important issue and naturally leads to numerous follow-on discussions e.g. animal testing, distinctions between humans and other animals, what constitutes consciousness etc. etc.  These are some spicy questions (#foodpun) so naturally it becomes anarchy when people discuss it on the internet.
    In recent years, the discussion has shifted into the realm of science, incorporating the dietary effects of meat-eating and the impact of widespread livestock farming on an already strained environment.  Moving from philosophy to science lands it squarely on my doorstep, so I’ve decided to tuck in (#foodpun) and try to pull some facts out of the quagmire.    
    Currently, 8% of the world is vegetarian and a smaller minority - around 0.5% - identifies as vegan.  There’s a bit of disagreement over whether vegan simply means “plants-only diet” or if it means a lifestyle which excludes any form of animal exploitation.  For this blog, I’m going to use the former definition because I’m focusing on biochemistry and environmental science rather than applied ethics.  Sorry if that's not how you use the term.
    I should also warn my readers that wherever you sit on this extremely important debate, there will be one or two things in the blog which will probably make you uncomfortable.  My aim, as always, is not to espouse a particular belief but to present the facts as best I can.  If you read things you don’t like then don’t worry, so did I.  Hopefully I'll be able to present it objectively and you won't even be able to tell what my personal feelings are.
Picture
It might look vegan, but that bread contains a bit of Shrek's corpse
A Matter of Taste (#foodpun)
    In my previous blog, I talked about the controversial art of IQ testing and the difficulty you run into when trying to make up your mind about it.  The problem is that there’s so much evidence both for and against - not to mention a bunch of misinformation, pseudoscience and confusing Netflix documentaries - that it's hard to extract a clear answer.  Unfortunately, the same is true of veganism.  But first, let’s address some crucial misconceptions about food.   
    You probably got taught in school that there are five or six “food groups”, usually depicted in a colourful pyramid or a non-threatening pie chart.  The idea of food groups was devised in 1972 by Sweden’s National Board of Health and Welfare to combat dietary shortages across the country.  To avoid widespread malnutrition, the Swedish government wanted to make a simple guide advising people on what to eat.  It’s a noble idea but it suffers from two big problems 1) you can’t simplify dietary science because it’s freaking complicated and 2) they don’t seem to have based their suggestions on any in-depth clinical trials whatsoever.
    To make things worse, there’s a fair amount of evidence that in America the USDA’s version was heavily influenced by lobbying groups representing companies within the food industry to make certain foods more of a priority than others.  So although the idea of food groups is a good one, I’d take it with a pinch of salt.  #foodpun
    When the standard food groups are listed, they usually lump each type of meal into one category, rather than reflecting the complex reality that most foods contain a mixture of nutrients.  Meat, for instance, is usually listed as a protein despite containing lots of vitamins, while vegetables are usually put in the vitamin category despite containing lots of protein.  Then there's fiddly stuff like the fact that some nutrients can be classified in more than one category and even be converted into each other.
    As if that weren't complicated enough, there are 7.5 billion human metabolisms out there and we don't know a great deal about how they work (like the fact that gum disease links to Alzheimer's…what’s that about???) Human biology, especially the study of food, is so complicated that it’s difficult to make any absolute claims, which means there is no such thing as an indisputable food “fact” other than the obvious one...we need it to not die.
    All of the conclusions we have drawn about human diet are statistical likelihoods which differ from person to person, meaning you have to be very discerning with what you accept.  What works for one body might not work for another. 
Picture
Responses to the new Swedish flag design have been mixed
Myth: Vegans don’t get protein.  
    This is completely wrong, but it's hardly surprising that people have this misconception based on the food-group model.  Actually, plants contain a ton of protein and a vegan diet gives you everything you need to build muscle mass.  Just ask nature’s most dedicated vegans - gorillas.    
    To say your body needs meat is not really accurate.  But it’s also not accurate to say your body needs fruit and veg either (sorry moms of the world).  What you really need are the chemicals the foods contain and as long as you’re getting them from somewhere, your body doesn’t seem to be all that picky.    
    That being said of course, living on a diet which is too narrow does have knock-on effects.  For instance, a lot of communities in the Arctic circle live in a region where growing crops isn’t possible so their diet is exclusively carnivorous - consisting of caribou, fish, seal, rabbit, birds and eggs.  Or consider the Maasai tribesmen of Africa who subsist on a diet of meat, milk and blood (with a bit of maize thrown in).
    These peoples are clearly not extinct and have been living on a meat-only diet for generations.  But, as you might expect, this isn’t the healthiest way to human.  You’ll find a bunch of literature on anti-vegan websites citing studies by anthropologists like V. Stefansson and G. Mann claiming the Inuit and Maasai are in perfect health (Mann even claimed the Maasai had immunity to certain diseases).  However, this research was invariably drawn from small sample-groups, anecdote rather than evidence and included a lot of vague and untestable statements.  
    Later and more rigorous studies carried out by Nestel (1986) Bjerregaard (2003) and actually Mann himself, found that an exclusively carnivorous diet leads to a higher chance of heart disease, bone disease and...wait for it...symptoms of malnutrition.  Shocker.  So while it is true that a meat-heavy diet technically has all the nutrients you need to stay alive, it doesn’t do you any favours.
Picture
A lesser known food group...
But Isn't Our Body “Built” to Eat Meat?
    The answer to this question is a pretty clear ‘yes’ and there's a bunch of evidence to back it up.  For instance, carnivorous mammals have small fat cells in their adipose tissue (for metabolic reasons I won’t go into) while herbivores have much larger fat cells.  This means you can get a pretty good reading on how a species' diet evolved by looking at their fat tissue, and ours is much closer to that of omnivorous mammals than herbivorous ones.
    Then take stomach acidity.  Carnivores need to have way more acidic stomachs in order to digest the bacteria found in meat.  Human stomach acid is significantly more concentrated than that of herbivores (by a factor of around ten) lining up neatly with omnivores.
    Then probably the strongest bit of evidence: our body is not capable of synthesising certain nutrients like vitamin B12, despite needing them to live.  Today, vegans have to take supplements or eat fortified foods to stay healthy - a practice not available to early hominids so their source of B12 would have necessarily been meat.
    So yes, humans did evolve eating meat. But (and this is important) that doesn’t mean we are biologically compelled to live the same way.  I mean, if you want to play the “evolution built us like this...” game, I’d point out that we aren’t really built to walk upright and doing so is pretty disastrous for our backs.  Yet we insist on doing so. 
    Evolution may have set us up a certain way but that doesn’t mean there’s a magical law of Darwinism which says we have to keep repeating it.  Evolution doesn’t make creatures “better” or “optimal”, it just works with what it’s got and we can absolutely improve on its designs.  I mean...we invented cosmetic surgery for precisely that reason.
    However, to flip that point around we can just as easily make it an anti-vegan argument by saying evolution made us walk a certain way and when we deviated from that arrangement, it started causing problems from our backs - couldn’t meat-eating be the same?  I mean, if evolution made us one way, deviating from that (even if it's an inconvenient design) could be bad news. 
    Switching to a vegan diet does lead to weight-loss and an increase in emotional well-being in the short term (that's widely reported and verified) but what happens in the long term is less clear.  The question of what we are “built to do” is therefore a tad misleading.  The question should really be: what happens to your body if you stop eating meat?  And I’m afraid the answer is not a simple one.
 
Ah Shucks, This is Gonna Get Ugly Isn’t It…
Yes, I’m afraid so.
Picture
They're either arguing or they both really want to eat that explosion
The Subtle and Downright Inconvenient Truth
    People talk about health as if it’s a progress-bar in a videogame which goes up and down until it drops to zero and you die.  In reality there are so many different aspects to health that sometimes (because evolution isn’t your friend) they contradict.  For example, I knew someone as a young adult who had cancer.  She was given a course of chemotherapy drugs which killed the cancer entirely.  But at the same time, they shredded her immune system and she died from a viral infection.  Were those drugs "good" for her health or "bad" for it?  Without them she would have died of cancer but because of them she died of an infection.
    Or imagine someone who smokes a couple of cigarettes a day but never eats fast-food or snacks and exercises regularly...compared to a non-smoker who sits on the couch all day and lives on a diet of chocolate and chips.  Which of them is in better “health” the smoker or the non-smoker? 
    Health is not one thing and biology rarely works on absolute cause/effect.  In physics you push a ball and it rolls with a certain momentum every time, but in biology the same chemical in the same person on two different days can have two different outcomes.  
    It isn’t difficult to find testimonials from people who got sick when they switched to a vegan diet, and vice versa: you can find plenty of convincing stories from people who went vegan and reported immediately feeling better.  The problem is that both groups are telling the absolute truth, so the only way of getting hold of anything useful is to consider one of the most important devices in the science arsenal: a meta-analysis.  
    A meta-analysis is a study of studies in which a general consensus is arrived at by examining what all the research says and averaging it.  They can take years to assemble because scientists writing them gather all the research they can from all over the world and evaluate the methodology of each study before drawing a conclusion.
    When it comes to meat-eating, the biggest and most thorough meta-analysis I’m aware of is quite a recent one, published on 19th November 2019 by Bradley C Johnston and 20 other researchers (The Annals of Internal Medicine, Volume 171, Issue 10) in which they analysed studies of red meat and processed meat compared to cancer-mortality rates.  Johnston’s meta-analysis covered 6.1 million test subjects, ranging in age from 3 to 77 going all the way back to 1904.
    Furthermore, and quite critically, their study received absolutely no funding which means they didn’t have a financial incentive to uncover a specific outcome and did everything off their own back.  What did they find?  
    Well, the only absolute conclusion they could sift from this staggering dataset was that limiting red meat intake by three meals per week would lead to seven less cancer deaths in every one thousand people, while limiting processed meat intake by the same amount would lead to eight less deaths for every thousand.  Now, let me say that statistic in two different ways, just to show how easy it is to spin the data…

Pro-Meat Eating Spin:
Eating red or processed meat won’t even increase your chance of dying from cancer by 1%
 
Pro-Vegan Spin:
Red and processed meat cause 70-80 million deaths a year
 
In the first instance I’ve taken the cancer deaths as a raw percentage which gives us 0.7% - the risk of meat sounds insignificant.
 
In the second instance I’ve taken the number of meat-cancer deaths and expressed them as a percentage of the global population.  Suddenly meat sounds like a mass murderer.

    But that’s just cancer.  What about all the other diseases which have been linked to meat consumption?  Well, again the picture is murky but one of the most thorough studies I know of is the one reported in the British Medical Journal 4th September 2009 by Tammy Tong, who examined a variety of health effects in over 40,000 people and found vegans were at lower risk of heart disease than omnivores, which seems to make sense.  After all, Maasai tribesmen and Inuit communities have a higher chance of heart disease from eating loads of meat.
    BUT (kick-in-the-head-time) vegans turn out to be at a higher risk of suffering a stroke, which means reducing your meat intake will improve your heart health but cutting it completely might put you at risk of a brain aneurysm.  Subsequently, going vegan could be simultaneously safer and more dangerous, depending on what other factors there are in your body.  If heart disease runs in your family you’re possibly better off limiting the red and processed meat, but if strokes run in your family going vegan could be putting you in harm's way. 
    Nature has seemingly presented us with a demonic trolley-problem in which we have to chose between our own health and the lives of other living things.  What do we do when it's us or them?  Do we decide that the allegedly smarter animal (us) deserves to live more than the allegedly dumber animal (livestock)?  Where do we draw that line?  How smart does an animal have to be before we decide not to kill it for our survival?   
    And that's just two diseases.  There's a whole galaxy of studies out there which point in both directions on the meat-eating issue.  Eating meat and going vegan both have benefits and risks, so I'm afraid Science is of no help there.  My advice as far as biology goes would be to consult a qualified doctor, rather than going by what you’ve seen in a documentary or read in a YouTube comments section.  The ethics is up to you.  Sigh.  
Picture
Pretty sure I'm gonna get McSued for this
Hotter By The Minute  
    While the dietary science of veganism is nuanced, the climate science is a lot clearer.  Farming livestock on the scale we currently do isn’t logical.  For one thing, it’s not a very efficient use of land e.g. 7 kilograms of grass is needed to produce 1 kilogram of beef, so cattle-farms take up way more room than crop-farms feeding the same number of people would.
    Another big problem is that to keep those animals healthy farmers have to use a lot of antibiotics.  Like, a lot a lot.  In fact, this is largely what’s behind the bacterial apocalypse we’re heading toward- 90% of antibiotics used in the world are actually given to livestock and it’s that which is leading to widespread bacterial immunity.  So...that’s not great.
    Then there’s the effect of livestock on climate change.  The number varies depending on the study you read but somewhere between 15% and 30% of all greenhouse gas emissions come from farming animals.  Half of that problem comes from the simple fact that animals tend to fart and burp indiscriminately.  Yeah.  That’s right.  You heard me.  Farting and burping is legitimately part of climate Science.
    If you read the literature on this topic you’ll come across the polished phrase “enteric fermentation” but that’s ridiculous fancy talk.  Animals fart and burp with abandon, kicking out huge quantities of methane all the live-long day from both ends and this is a major problem for absorbing heat in the atmosphere.
    There’s some interesting research into changing livestock diets (notably by giving them more seaweed) which cuts most of the offending gases, but there’s still the fact that animals produce manure.  A ton of it.  There’s a joke I desperately wanted to put here about “a ton” of manure but it would have involved a curse word and I have to keep the blog PG.  Darn it.
    Besides all this bullcrap, there’s other issues like fertilisers needed for the grass, processing of the meat, transporting it etc. etc. and the science is pretty cut and dried…livestock farming is a major problem for climate change.  Unless the cows learn to drive Teslas, of course, in which case problem solved.
Picture
Dude, I don't care if it's bad for the environment...wind the window down if you're gonna do that!
So...what do we do?
    Nobody has ever run this experiment (obviously) so all the information we have on global veganism comes from simulations, which can be difficult to get right because there are so many variables.  For instance, if you buy a kilogram of chicken from a farm down the road that has less of an environmental impact than buying avocados shipped from South America.  Local produce is always better, but some countries don’t have the climate to make crops, so importing is their only option.
    There’s also the problem of topsoil which has to be rolled and tilled regularly for planting, which releases CO2 into the air.  If we switched to crops humans can eat instead of feed for animals, we’d have to be rolling and tilling the soil more regularly (just by the nature of what plants we can digest) which has its own greenhouse gas cost, offsetting some of the savings we’d make.
    However, all the models I’ve seen come to the same conclusion even with these compounding factors: if we switched to vegan diets we would cut a significant chunk of our greenhouse gas emissions.  Would it solve the climate problem?  No.  But would it buy us a few more decades?  Yes.  And frankly, when it comes to the end of the world, I figure we should consider taking every chance we can get.
    Going vegan is also a lot easier to do than cutting energy or transportation needs.  Our homes need heating and our kids need to be driven to school so that's not easy to get rid of...but changing our diet is quite simple.  Just buy less meat.
Picture
Buy less what now???
What if the World Went Vegan Overnight?
    Now, before we all go rushing out to buy Linda McCartney sausages and whatever the hell kale is, there’s a few things to consider.  All the simulations we have, work by comparing the current world to one in which everybody is already vegan.  There are very few studies looking at the transition period and if we don’t handle that carefully it could be catastrophic.
    Suppose we switched to vegan diets in a single month.  What would we do with all the animals?  There are two options.  Either we turn them loose and 99.9% quickly die of starvation, so we suddenly have billions of animal carcasses rotting everywhere leading to a bloom of fungus which is like detonating a carbon dioxide bomb in the atmosphere...something we sort of want to avoid in environmental terms.  Not to mention, forcing these animals to starve in agony might arguably be worse than the bolt-gun of a slaughterhouse.
    The alternative would be to keep all those animals where they are and turn the farms into preserves.  The problem with that is that we’d be using the same amount of land for animals and their feed plus crops to feed ourselves, so we’d actually end up with less land available for a while.  
    If we had done it two hundred years ago things would have been fine, but our ecosystem would be in trouble if we switched too quickly now.  The answer is therefore to do it slowly.  A few more people every year buying less meat will send messages to the food industry that there’s less of a demand, which will make them shift their practices.  They’ll stop artificially inseminating the animals they have and their animals will die in stages.  The answer isn’t to get everyone vegan in a flash, it’s to do it over a few decades.
Picture
18th Century milkmaids selfishly not understanding climate science
Are There Environmental Problems With Dropping to Zero Meat?
    There are two potential complications we need to be aware of if we switch to veganism globally, one of which is blight.  It’s not a widely discussed statistic but around 40% of Earth's crops die every year due to it.  A particularly virulent strain can spread through a farm and cripple it within weeks but at the moment it doesn’t cause much of a problem because if crop yields are down, people can supplement their diet with meat.  But if crops are the only things we’re eating, a bad year of blight would give us the Irish potato famine on a planetary scale.
    Switching to zero meat globally is putting our food supply in a narrow basket and the risks of that need to be planned for.  I'm not saying abandon the plan and stick to livestock...just saying we need to factor in the risks.  I mean, that’s the whole premise of the movie Interstellar - a blight hits the world and we lose most of our crops, leading to dust-storms and the collapse of civilization.  That could really happen and things got so bad in the movie we had to resort to asking Matthew McConaughey for help.  This is Matthew McConaughey…
Picture
Saving the planet y'all
    The other problem with switching to zero meat globally is that it doesn’t work for economic reasons I don’t pretend to understand.  I've had a few people try to explain the gist of it to me and here’s what I *think* the central idea is: there are places on Earth where it’s not practical to farm crops, so keeping animals is sometimes a better solution because they are the best way of converting nutrients from the soil into a form humans can digest. 
    Take some of the mountainous regions of West Asia for instance, where you can’t grow grains in the poor-quality soil, but you can farm goats who survive on the tough grass which grows there.  In the West, most of the commercial meat comes from faceless and heartless corporations, but in Africa and central Asia a lot of the meat comes from small-scale farmers trying to make it through the winter with their family intact.  If everyone went vegan, those farmers, along with their children, have no economic security and starve.
Picture
I just wanted to order a Subway
A Flexitarian Future?
    The ethical debate around meat-eating isn't as simple as "cruelty to animals is wrong so we shouldn't eat meat".  That's not the part anyone disagrees with...at least I don't think it is?  Most meat-eaters I've conversed with on the topic don't like cruelty to animals one bit.  The real problem, the one that's much harder to solve, is that certain economic and biochemical principles seem to say that if people want to stay alive and healthy, they stand a better chance of doing so at the expense of other animals.   That's what the argument is really about. 
    Also, just to address the elephant in the checking account, a vegan diet is currently more expensive than a meat-eating diet and some people don’t have the money to afford the luxury.  Yes, the more people who switch to veganism the lower the price will be in future...but we aren’t there yet.  So if you’re privileged and wealthy enough to afford a vegan lifestyle that’s awesome and you’re helping do your bit for the world, but for some people buying cheap meat is the only way to keep their children healthy and I'm not sure you can really criticise them for that.
    We do need to cut livestock farming drastically, but I will concede that dropping to zero-meat comes with its own problems - environmental, economic and ethical.  The answer may not be a global “no meat” policy therefore but a more achievable and realistic “less meat” one.  It's not a perfect solution, but nature hasn't given us a perfectly solvable problem, so we gotta do the best we can.
    The safest thing to do, both for the environment and our health, might be to gradually and cautiously move toward a diet which has less meat in it, while recognising that not everybody can or should go fully vegan.  That's a difficult message for both sides to swallow (#...ummm...foodpun???  Yeah, I'm not in the mood anymore either).  For meat-eaters, it's time to recognise that the world needs vegans and lots of them.  For vegans, it's important to recognise that everyone going vegan probably isn't the best way to do things either.  Which leads to my final point.
 
Don’t Be Jerks To Each Other
    Meat-eaters: don't be jerks to vegans.  Don’t mock them for their views, don’t make the whole “but how can you live without bacon?” joke, don’t deliberately eat steak in front of them (like Fox news reporter Jesse Waters did live on air during an interview with a vegetarian writer) and certainly don’t spend hours justifying why you do eat meat - that just makes you seem insecure and defensive.  Frankly, the world needs all the vegans it can get, so if people have made the choice to eliminate meat from their diet you should probably be thanking them.
    Vegans: don't be jerks to meat-eaters.  I knew a vegan once who said meat eating was worse than the holocaust because, according to him, on sheer numbers it's a bigger extermination of living beings.  Some readers might agree with that statement but even if you do...what do you hope to gain by telling meat eaters they're worse than Nazis?  Do you really think that's going to help them change their minds?  Some people eat meat because it’s healthier for them and cheaper for their families and I’m not sure you have the right to tell them to compromise their health (or the health of their children) for your moral values, no matter how strongly you hold them.
    There aren’t any easy answers to some of these questions and often people come to a decision on meat-eating with trepidation and unease.  I know I did.  But if animal suffering is something we want to avoid (I think most people can agree on that, omnivores and vegans alike) let’s try to treat other human animals with compassion too.  It’s a start, right? 
Image Credits:
Scientist with vegetables: Freepik
Shrek-burger: ethical
Pie Chart: Forksoverknives
Food Group: Zazzle
Argument: thedailystar
McDonalds: change
Cowcar: Babajana
Blackboard: eightieskids
Milkmaids: pinterest
Matthew McConaughey: screenrant
Moral Problem: psmag

0 Comments

IQ Tests - What's the Deal?

1/3/2020

0 Comments

 
Picture
"Yes, James. I get it...'Hi, Q'...you're freaking hilarious."
The Book That Never Was
   
Over the years I've hopped back and forth on the issue of IQ tests.  They get used in school admissions, job applications, criminal trials, military recruitment and performance management cycles but there seems to be great disagreement over whether they're actually telling us anything.  The problem is that so much has been written about them (for and against) that the waters of debate are pretty muddy and it's not easy to know what the deal is. 
    Some books condemn the whole concept and argue that IQ tests only tell us how well people do on IQ tests (The Mismeasure of Man by Stephen J Gould, IQ: A Smart History of a Failed Idea by Stephen Murdoch, The Sun Shines Bright by Isaac Asimov) while others argue that IQ tests are useful but get nervously dismissed because they raise uncomfortable results people would rather ignore (What Is Intelligence? by James Flynn, Looking Down on Human Intelligence by Ian J Deary, The Neuroscience of Intelligence by Richard J Haier). 
    A while back, I decided I wanted to write a book of my own on the topic and present readers with a non-biased summary of what IQ research has actually uncovered.  I approached my publisher with an idea for a book called The Science of Clever and although they were interested, it soon became obvious to me that it was going to end up a mess.  The consensus on IQ testing is not cut and dried and you can't spend 50,000 words shrugging your shoulders and saying "Ummm...I dunno".
    The study of intelligence research is called "psychometrics" (which sounds like a Transformers villain) and although I couldn't quite turn the whole field into a single light-hearted book, I still ended up with a bunch of interesting research, not to mention a half-finished manuscript on my hard-drive.  So, I figured I might as well summarise the surprising highlights in my first blog of 2020.  I doubt The Science of Clever will happen, but if it does, you're getting the first couple of chapters for free.  Merry Christmas guys!
Picture
"Ah, mon capitaine...if you're looking for something to say, might I suggest...'Hi, Q'?"
What Is An IQ Score?
    First thing's first: there is no such thing as a standard or internationally recognised IQ score.  IQ tests are actually products sold by private companies and there are dozens of brands available, none of which line up.  For instance an IQ of 130 on The Culture Fair IQ Test is equivalent to a score of 150 on The Cattell III-B IQ Test and so on.  If someone claims to have an IQ of whatever that doesn't actually mean anything unless they specify which company's test they scored it on. 
    The two most commonly used versions are the Wechsler Adult Intelligence Scale Version 4 (WAIS-IV) sold by Pearson Assessment for $980, and the Raven's Progressive Matrices Test sold by Hogrefe Ltd for $200, although you can't just purchase the tests from amazon as a private citizen.  They are only sold to professional psychologists who have to agree to keep the materials under lock and key and never publish the contents.
    From a cynical point of view, keeping the tests secret allows these businesses to continue making profit because a psychologist can't just download them from the internet.  From a scientific point of view, however, keeping the contents secret means the results are more useful because subjects can't cheat by looking up questions.
    The WAIS-IV takes about two hours and is administered individually (in private) with a psychologist holding a stop-watch, timing you on questions they ask.  The Raven's test is a booklet of pattern-recognition questions you fill in against the clock like any exam.  Both tests arrange questions in order of increasing difficulty and the further you get, the more value the questions have.
    Your score is then ranked against other people and expressed as a comparison of where you come in the overall population.  This is actually quite important because it means an IQ score is not an absolute number - it's a "quotient" i.e. a ranking of where you fit in a group.  A good analogy is to think of it like a race in which you compete against other runners and measure your position rather than your raw speed. 
    How the group gets selected is very important for the results to be reliable.  For instance, if you come third in a race of 100 professional sprinters that's impressive.  If you come third in a race of only three people and the other two were on crutches, that's less so.  The trick to getting a reliable quotient is therefore to make sure you're grouped with people of a similar type.  IQ tests do this by age.  Nothing else.
    You probably assume, like I did, that psychologists have a) a good reason for grouping people by age and b) that the questions on the test are carefully arranged to distinguish easy from difficult.  But you'd be wrong.  IQ tests are unfortunately the result of historical convenience which tends to form the crux of anti-IQ arguments.  They aren't based on any theory whatsoever.
Picture
"But I was the original 'Hi, Q!'"
The Worrying Origins of IQ
    The first intelligence test was composed by the French psychologists Alfred Binet and Theodore Simon who asked local schools to provide them with a sample of "normal" boys to see what a child should be able to do.  This is a problem because the baseline of normal was decided by teacher opinion rather than actual data...but that's all Binet and Simon needed; their test was a tool to help schools decide which boys were developmentally behind others.  The problem came when other psychologists took the test and stretched it beyond what it was designed for.
    The American psychologist Henry Goddard got hold of the Binet-Simon test and began administering it to thousands of American children (male and female) without checking to see what they could already do.  Thus, if a child couldn't do what a small group of suburban French boys could, they were deemed below average. 
    After Goddard's test, a physician named Howard Knox wrote an adult version of the test to assess the intelligence of immigrants coming to America via Ellis island.  Knox seems to have composed his questions out of thin air assuming that a "normal" adult should be able to do whatever he personally felt they should. 
    Following on from Knox, the Stanford psychologist Lewis Terman published his own supposedly more sophisticated version in 1916, again making-up questions based on his own personal feelings about what the average person should be able to do.  Unfortunately, Terman was a noted eugenecist and racist so his test questions were based on information common to white middle-class America that black immigrants couldn't possibly be expected to know.  Then, in some astonishing and offensive circular reasoning, Terman pointed to the fact that black immigrants didn't perform well on his test as proof that they worked. 
    Along with his student, Arthur Otis, Terman also introduced the idea of expressing results as a quotient based on the assumption that results should fit a bell-curve for a given age group.  But here's the wacky thing...Terman never actually tested that assumption and nobody has since.  The whole basis of calculating IQ score comes from an idea some guy basically made up!
    The problem we now face is that it's unclear whether IQ test companies have actually rectified the problem because they can't publish data on how the tests are written.  For example, if they published data that showed a certain type of question was harder, people could easily practice that kind of question, score higher on the test and artificially distort the results.  The only way to assess whether the assumptions of IQ tests are correct would be to study them openly...which would immediately invalidate the tests themselves.  A catch-22 of epic proportion!
    So, does this mean IQ tests are useless ?  Well, not quite.  Critics of IQ tests have every right to point out that there are a wealth unfounded assumptions which go into them but, and this is important, it doesn't matter how a theory is arrived at or how sloppy the original scientists were.  If a theory works, it works. 
    Fritz Haber was practically a war criminal but we still use his ammonia reaction to make fertiliser, Alexander Fleming discovered pencilin because he was a clumsy lab chemist who sneezed into a petri dish, but we still prescribe it for infections.  Terman and the rest may have been irresponsible, even downright racist in their methodology, but we shouldn't evaluate IQ tests based on how awful the inventors were.  We have to look at the data.  And, against all the odds, IQ tests actually do sort of work.  A bit.  Sometimes.  Vaguely.
Picture
"Hi, cue!"
g-Shock
    By the mid 1930s, the main debate over intelligence was whether there really was such a thing.  According to some psychologists, there was a single characteristic of the brain called g for general intelligence which fed down into all the different types of skill - memory, puzzle solving, pattern-recognition etc.  According to others there was no such thing and people were simply good at different stuff. 
    One of the biggest surprises in the history of psychology came when a young student named David Wechsler settled the debate in another gob-smackingly lazy bit of science which accidentally revealed a valid result.
    Wechsler had studied under many different psychologists who all had their own view of how  to measure intelligence.  Wechsler decided, in 1939, that the best thing to do would be to stick all the tests together and create one super-test.  If g really did exist and intelligence was one thing, people who did well on one test would do well on all the others.  The result was the aforementioned WAIS; a battery of thirteen sub-tests as follows... 

1) Vocabulary and definitions (e.g. what does vulnerable mean?)
2) Similarity spotting (e.g. what is the link between a fork and a knife?)
3) General Knowledge
4) Comprehension (e.g. why do people put food in a fridge?)
5) Spot the missing shape in a series
6) Pattern recreation (you are given coloured blocks and have to recreate images)
7) Picture arrangement (you are given a series of pictures and have to put them in logical order)
8) Matrix puzzles (you are given a grid of shapes which follow a pattern and you need to spot it)
9) Arithmetic questions
10) Repeating sequences of numbers from memory
11) Putting strings of letters and numbers in a given order
12) Code breaking (you have to decipher a message using a table of values)
13) Finding given symbols in a grid of random ones

    Wechsler himself  believed there was no such thing as general intelligence and people simply had talents and preferences.  The idea of a single number to reflect some underlying factor was ridiculous because how could one number reflect your whole ability?  But, to his surprise, it turned out that there really is something there.  People who do well on one WAIS test end up doing well on all of them...by similar amounts.
    The largest survey to investigate the existence of g was carried out in 1997 by The Psychological Corporation who looked at breakdowns of the WAIS-III test, analysing 2450 Americans from 28 different cities ranging in age from 16 to 89.  Given the 13 components in the WAIS-III there are a possible 78 relationships between sub-tests and every single one of them has a positive correlation.  Which shouldn't have happened.  Wechsler's test was cobbled together like Frankenstein's monster and yet somehow yields the inescapable result that there really is some unifying brain-feature which translates to a variety of mental skills. 
    The strength of a correlation can be expressed as a percentage where 0% means "no relationship" and 100% means "perfect relationship".  A value of something like 20% means there is a weak relationship between the two variables while a value of 80% means there is a strong one.  For the WAIS-III the average correlation across the 78 comparisons was a remarkable 50%.  The strongest was 80% (between vocabulary and general knowledge) while the weakest was 30% (between number-sequence tasks and missing shape tasks). 
    A very important caveat is that g does not mean the same as the everyday word "intelligence".  It refers to a currently unidentified cognitive feature and when we talk about intelligence there are other factors such as creativity and wisdom to consider...but g is a part of it.  My personal feeling is that a correlation of 50% is still too vague for a score to be expressed as a single number, so I think an "IQ range" would be more useful, but the fact is g apparently exists and the WAIS IQ Test goes some way toward measuring it. 
Picture
"Hi, queue..."
What Does It Tell Us?
   
So far all we've shown is that a single IQ score is a moderately reasonable way of measuring something inside the brain.  But does it actually translate to the real world or is it just a number which tells you how well you're likely to do on other tests?  Well, there are a few characteristics which an IQ score does seem to predict.  I've picked a few example studies to show the most agreed-upon findings and although different studies disagree on the strengths of the correlation, the ones I've picked are fairly representative.  It would appear that IQ can partly predict...

School Performance - 2015 study by Frank Spinath analysing over 105,000 students comparing IQ score with school performance and grades.  They found a correlation of 54%.  That's quite an important finding for me as a teacher.  It means that while IQ plays a factor in how well a student does, it's only half the story.  Optimistically, this means if you have a low IQ you are not destined to do badly in school although conversely if you have a high IQ you are not guaranteed straight A's either.  Other factors like work-ethic, effort, teaching quality and probably a bit of luck will play into it as well.  IQ is half the story of how well people typically do in school. 

Income as an Adult - 2007 study by Tarmo Strenze analysed over 29,000 people comparing IQ score with income.  Strenze found a 23% correlation which means there is a loose relationship but it's not everything.  IQ can contribute a little bit to how much you'll earn as an adult but it's one of many factors. 

Crime and Violence - 2013 study by Predesco of crime and IQ statistics of a dozen European countries found correlations of violence 50%, homicide 37%, motor-theft 39%, burglary 30% and  nothing for robbery (6%).  People convicted of crimes, especially violent ones, are more likely to have low IQs.

The P300 - 1998 study by Diaz found a correlation of 44% between IQ score and what's called the P300 value.  This one is tantalising because your P300 value is a measure of neuron speed.  It measures how quickly after a stimulus your brain waves change and on average, human neuron response-time is 300 milliseconds (hence the number) but people with higher IQs tend to be a few milliseconds faster.  People with higher IQ scores are, on average, slightly faster in neuron response speed.  Important note: This study sample was a lot smaller than the others but its result is too intriguing to not mention.

Weirder Stuff: IQ correlations have been shown between a few other unexpected personal characteristics.  I won't go into much detail but the studies are out there if you want to go looking.  IQ correlates positively with...

a) Being a fan of dark humour
b) Enjoying puns
c) Having been breastfed as a child
Picture
Yup.
Ummm...What???
    Because IQ is a slightly fuzzy measurement of a slightly fuzzy concept, it's possible to pull all sorts of correlations out of the data, some of which are subtle or misleading.  It's widely accepted for instance that the tests are very dependent on culture and upbringing (after all, the first few sub-tests on the WAIS-IV are about things like general knowledge and vocabulary which are very environmentally shaped). 
    Sometimes this can be geographic e.g. children raised in Asian cultures perform, on average, slightly better than children raised in American cultures.  This isn't really surprising given that the two cultures are vastly different, but it leads to the unfortunate misconception that "race" affects IQ.  In fact, when you correct for environment, culture and upbringing, these differences vanish and people of all races do just as well on IQ tests.
    But there are a few harder to explain quirks which come out.  For instance, IQ scores negatively correlate with SAT scores i.e. people who do well on IQ tests are likely to do worse on their SATs...which is the exact opposite of what you'd expect.  Another really weird correlation is that left-handed people tend to perform a few IQ points higher than right handed.  Maybe because they live in a world which requires a bit of extra focus and puzzle-solving to do basic tasks (all the tools and equipment of the world are geared for right-handers) so perhaps their brains are just a teensy bit sharper and more practised? 
    Another interesting finding is that people's IQ tends to decrease during adolescence but then increase with old age i.e. a child with an IQ of 140 at the age of 9 might drop to an IQ of 110 by the time they're 22, but then go back up to 140 by their 40s.  Contrary to popular myth, older people actually have higher IQs than younger people.  Nobody has a clue why that's happening. 
    More baffling, and probably one of the most heated debates in the psychological community, is the "Flynn effect" discovered by James Flynn: the undeniable fact that the global average IQ scores are going up and not by a small amount.  Flynn, who is not anti-IQ testing as has been reported, discovered that every generation performs significantly better on IQ tests than their parents did at the same age.  So although your parents might have a higher IQ than you, you're probably smarter than they were at your age.  But why is this happening???  Is modern culture preparing people to do better on the tests?  Is it a change in diet?  Are smarter people breeding more?  We don't have a clue but the fact is there: IQ scores are going up.
    There are also fascinating correlations between IQ and voting habits, religious practices and this is part of what makes IQ such a hotly debated topic.  There currently isn't an accepted theory of what IQ even is, so it's up for grabs and nobody's exactly sure what's baby and what's bath-water. 

The Young Science
   Psychology is a new science and it's finding its feet.  IQ tests are one of its first major contributions and, naturally, they're going to be a bit clunky.  But, I ask you fellow scientists, were physics, biology and chemistry so different once? 
   Mendel's theory of genetics was a simplistic way to explain variation but it has a few nuggets of truth in it and pointed us in the right direction.  Bohr's early model of the atom was unrefined and misleading but it gave us a starting point and, again, pointed us in the right direction.  Lavoisier's first periodic table muddled up compounds with elements but, once again, it pointed us in the right direction.  Science doesn't usually jump straight to the right answer in one go, it makes casual stabs first and I motion that IQ testing is of a similar nature. 
    The tests are problematic, vague and unreliable I agree but the fact that they do predict a few things with accuracy means they are a step in the right direction.  There is something to be learned from them, we just don't know what it is yet.  Yes, we have to be cautious and recognise that it is not the final picutre or even close to it, but it's an approximate sketch that vaguely resembles what we're ultimately looking for.  Trusting or disregarding IQ in its entirely seems unwise to me.  Recognising it as the first feeble attempt at something which might eventually work...that seems more like the "intelligent" thing to do.

Happy New Year

Image Credits

Bond and Q: Clearly
Picard and Q: Nerdist
Bond and Q2: DenofGeek
Pool cue: Let's play billiards
Join the queue: queuezone
Haiku: amazon


0 Comments

My Favourite Bits of Science

11/16/2019

0 Comments

 

(Part III)

Picture
Coming next week: My favourite stock photos of scientists!
The Nerdiest Guy In School
    It's been a while since I've written a blog so firstly, apologies for that.  I've been quite busy the last few weeks because I've been marking exam papers, working on my next book and enjoying the delights of an Ofsted inspection at my school.  It's been a long while since I added to my "Favourite Bits of Science" series but I've finally got a minute to write...and eat...and sleep.   
    In the first installment I talked about my favourite people from science history.  In the second, I discussed science popularisers I look up to and in this third chapter I'm going to write something esoteritc, self-indulgent and weird.  I'm going to talk about my favourite "things" in science.  Not people, not books, not TV shows, not facts...things.  What kind of person writes a blog like that, you ask?  Well, more to the point, what kind of person reads it? 
Picture
Favourite Particle: The Charm Quark
    In particle physics, there were originally thought to be three types of quark (correctly pronounced to rhyme with 'fork', no matter what anyone tells you).  The three quarks were named up, down and strange by Murray Gell-Mann, and using them we could explain the behaviour of every atomic nucleus known to man.  Those three particles are really all you need.  But what's interesting is that the strange quark is effectively a down quark with additional mass - as if nature gave the down quark a fat older sister for some reason.  Wouldn't it be a lot neater, therefore, if the up quark had a heavier counterpart too?
    The physicist Sheldon Glashow certainly thought so and proposed that there was a fourth quark hiding somewhere in the quantum wilderness.  This particle was not essential to our theories and wasn't needed to explain any observation, but it made things a bit more pretty, and thus Glashow named it the charmed quark, because its existence would be a charming feature of reality.  His proposed particle was eventually discovered in 1974 and his sentimental optimism was justly rewarded.
    The charm quark doesn't do anything especially different to the other three, but I love it because it reminds me of something important.  You sometimes get the feeling studying physics that nature only does things by necessity and that the governing law of reality is cold, mechanical causality.  The charm quark is a reminder that sometimes the Universe is pretty for no reason.  The Universe doesn't have to have symmetrical neatness, and yet it does.  The charm quark is a reminder that nature isn't only interesting...it's beautiful and that's worth celebrating too.
Picture
Favourite Element: Phosphorus
   
Phosphorus is the eccentric loner of the periodic table.  The unappreciated genius capable of chemistry no other element would think of.  It is the only atom to regularly form five bonds to others and it comes in a variety of natural states, which is also unusual.  While most elements tend to show up in one state with one colour, Phosphorus can be found as brown, black, white, red, yellow, purple, blue and glow-in-the-dark. 
    Phosphorus is the element which forms the backbone of DNA and is the "limiting reagent" in the biological ecosystem, meaning the entire population of living things on Earth goes up and down in line with the amount of available Phosphorus.  Not only is Phosphorus crucial to life however, it's also an important part of death - being the most toxic element on the periodic table and the basis of most chemical weapons.
    All of these reasons would be enough to make it an element worth taking note of, but my love of Phosphorus actually stems from something simpler and far less sophisticated.  I once accidentally set fire to a chunk of phosphorus during a reaction and, before I began choking on the toxic fumes, I caught a glimpse of it burning and it is one of the most beautiful reactions I have ever seen.  A photograph or video does not do it justice because on film it looks like any normal fire.  But if you see it in the flesh, the flames of burning phosphorus are unique.  They are silvery-white and ripple across the surface of the element like waves on a pond, hugging it as if they don't want to rise into the air.  Even when being destroyed, phosphorus is incomparable.
Picture
Favourite Chemical Compound: Ionic Liquids
   There are generally three ways atoms can bond to each other, called ionic, covalent and metallic.  I won't go into the technicals (if you're curious, check out my first book Elemental) but ionic bonding generally goes like this...two small, roughly spherical atoms or molecules stick to each other because of a charge difference.  One molecule or atom is positive, the other is negative and when they pack together they form a rigid lattice, resulting in crystals, salts and rocks etc. because they are tiny, highly charged pellets of matter crammed together in stubborn arrangements.  But there is one bizarre exception.
    If, instead of tiny balls of charge, you have two molecules which are quite big and bulky, the positive and negative charges get spread out across the molecules.  The result is that the charge-attraction gets diluted and when the molecules bind together, it's a weak attraction, meaning they don't form solid structures.  They form liquids.  Something which, prior to the 1930s, was thought to be impossible.
    Ionic liquids have all the properties of salts and crystals, but also the properties of liquids.  They tend to be thick gloopy substances, resembling honey or treacle, and they are usually colourless, yellow or orange.  What's really interesting is that because the particles in the fluid are so loosely attracted to each other, they tumble at a very low rate, so anything dissolved in them also interacts very slowly.  This means you have enough time for complicated reactions to take place and you can tailor your ionic liquid to the reaction you're trying to achieve.
    Ionic liquids fascinate me because they are substances which shouldn't exist...and yet do.  I also spent a whole year studying their behaviour (read more about that adventure here) and I think they're going to be one of the next big things in chemical research.
Picture
Favourite Equation: S = k log W
    Sir Arthur Eddington once wrote "If your theory is found to be against the second law of thermodynamics I can offer you no hope; there is nothing for it but to collapse in deepest humiliation".   
    The second law of thermodynamics is one of the most worshiped principles in Science and works its way into everything from data analysis to evolutionary anthropology.  It says, put simply as possible, that energy tends to spread over time.  Things don't become ordered at random, they become disordered and you can't get energy to stay in one place.  Everything from sugar poured on a kitchen table to the fabric of the cosmos itself spreads out, and we call this spread of energy "entropy", defined via the equation above.
    It's a bit hard to talk it through without diagrams and sketches but here goes.  Firstly, you take the number of possible ways energy can arrange itself, represented by the letter W (nobody knows why that letter was picked).  Then you find what's called the logarithm of that number.  That means: how many times do you have to multiply a number by itself to reach the value of W.  It doesn't matter what number you pick to use (typically you use 10 or sometimes the number "e") but once you have that, you multiply it by "k" which is called Boltzmann's constant - a number which relates the energy of particles to how they are moving and the computed answer will give you the entropy of what you're looking at. 
    I love this equation because it's simple enough to write in a few letters and yet it has far-reaching implications.  I once carved a giant version of the equation in the snow of my high school's back field (I'd like to think it's the largest snow-equation ever made) and when Ludwig Boltzmann, the man who came up with the concept of entropy, died, they put the equation on his tombstone.  Which means I have a favourite tombstone as well...
Picture
Image Credits
Stock Photo of scientist: madscience
Charm quark symbol: wikipedia
Phosphorus: images-of-elements
Ionic Liquids: iolitec
Boltzmann's grave: tumblr
0 Comments

My Favourite Bits of Science

9/27/2019

0 Comments

 

(Part II)

Picture
So, we think space is at least twice the size of this chalk line
A New Day Is Dawning
    In part I of this series I revealed my all-time favourite figures from Scientific history and why I admire them so much.  In part II, I've decided to talk about the art of Science communication itself and what I consider the finest examples of the craft.  Both my jobs are essentially: "explain Science to people who don't know the Science," so obviously this is something I care about a great deal.
    I started compiling the list last week, but as I went along I began to notice something rather surprising...all the stuff I've chosen was created in the last few years.  Initially, this made me feel like an uncultured swine, but then I realised something pretty exciting.  I've seen Sagan's Cosmos and Bronowski's The Ascent of Man.  I've read Darwin's On The Origin of Species and Levi's The Periodic Table and while I don't want to dismiss these towering works, I'm going to say something a little bold...I think Science communication is better today than it ever has been. 
    It's possible to respect the classics of an art-form, while simultanesouly recognising that contemporary material can outshine it.  What's wrong with saying you prefer Stephen King as a storyteller to Charles Dickens?  Why can't we admit that Shakespeare wrote garbage (The Taming of the Shrew) as well as genius (A Midsummer Night's Dream)? And why can't we dare admit that maybe, just maybe, Next Generation is better than The Original Series? 
    Absolutely we should honour the trailblazers which came first, but that doesn't mean we can't improve on them.  In fact, isn't that what's supposed to happen with time?  Shouldn't we learn from the flaws of the past and do better today?  Well, when it comes to Science communication I think we're doing just that. 
    There has never been a better time to be a Science geek because people are getting more educated about how things work and as literacy improves, so does the quality of explanation.  Consider how in the 1950 movie Destination Moon, the main characters walk around the lunar surface without helmets because the general public simply weren't aware there was no air in space.  Or how in Superman, Kal-El reverses time by spinning the Earth in the opposite direction because people weren't aware that...it wouldn't work.  You couldn't get away with those errors in a movie today because people are more informed.  We're smarter than we've ever been, so I'm not ashamed to say that I think the best Science communication is happening right now.  Without further ado...
Picture
Favourite Science TV Series (Non-Fiction): Planet Earth II
    Perhaps it's because I'm not a zoologist and therefore less familiar with the animal kingdom, but every sequence from 2016's Planet Earth II had my jaw on the floor.  Narrated by the voice of quality itself, David Attenborough (who writes his own scripts incidentally), Planet Earth II presented the most startling footage of animals and their environments I've ever seen.  While Attenborough's recent Netflix series Our Planet is also worth a watch, Planet Earth II has a more optimistic tone.  Our Planet puts an emphasis on how much we're screwing the planet up - I mean in fairness, we are - but Planet Earth II reminds us why the planet is worth saving in the first place.  Also, Our Planet has an insufferable credits song while Planet Earth II has a score by Hans Zimmer.  Planet Earth II wins.
Picture
Favourite Science TV Series (Fiction...Sort Of): Chernobyl
    A bit controversial as it's not strictly about Science, but I think 2019's Chernobyl is still worth mentioning.  Currently ranked #4 on IMDb (Planet Earth II is #1 by the way), Chernobyl shows, in agonising and brutal detail, how the Chernobyl nuclear power plant disaster occurred and how Soviet Scientists worked to contain and understand the damage, clashing with the political obstructions of their culture.  It's a fictionalised account of the real tragedy but it's drawn from transcripts, eyewitness statements and court documents, so while it's not exactly a perfect documentary, it's pretty damn impressive.  I started watching it one evening at 7pm and found myself so gripped I binged the whole series in one go, finishing around midnight.  It's depressing as hell (the fact it was written by Craig Mazin who wrote Scary Movie 3 is kind of astonishing) but if you can stomach the graphic violence, Chernobyl shows you what Scientific honesty looks like.
Picture
Favourite Science Book: Behave by Robert Sapolsky
    Robert Sapolsky is probably my favourite living Science writer and his books have genuinely brought me to tears from laughter and sadness.  Behave is not only his masterpiece, it is the finest thing he (or anyone else) has written about Scientific knowledge.  Sapolsky draws on his expertise in anthropology, primatology, biology, neuroscience, psychology, sociology and philosophy to tackle the human condition itself and figure out why we are the way we are.  While it's easy to dismiss  difficult questions like "nature vs nurture?" Sapolsky doesn't shy away from them or pull his punches.  He gets right down to the nitty-gritty of what we know about behaviour and what makes us act the way we do, covering everything from war to religion to economics to education.  I have never felt any book should be compulsory reading because forcing a book on someone will make them hate it, but I might make an exception for Behave.  If there was one book every lawmaker, leader, preacher and teacher should read...it's this.  Oh, and obviously my book.  Duh!
Favourite Science YouTube Channel (Non-Technical): Symphony of Science
    This one is just plain old fun.  Created by John Boswell, Symphony of Science is a series of music videos assembled from auto-tuned interviews with Scientists and documentary footage.  It's kind of hard to describe (check out the one above) but if you want a distilled barrage of cool images set to funky techno-songs about Science, Boswell is your guy.  While this series doesn't really educate or explain the facts as such, it encapsulates the fun and wonder of Science perfectly, as well as giving you tunes you'll be humming for days.  Science can be playful as well as heavy and it's nice to remember that.  Plus if you've ever wanted to hear Bertrand Russell rapping, look no further.
Favourite Science YouTube Channel (Technical): The Theoretical Minimum
    So let's say you're wanting to get stuck into the complexities of how modern physics works.  Let's say you aren't afraid of putting hours aside to dredge up your high-school math lessons and you want "just the facts ma'am".  The guy you want to go see is Leonard Susskind, Richard Feynman's protege and probably the finest Physics lecturer out there.  A few years ago, Susskind began a lecture series at Stanford University explaining Physics in full detail and stuck them online for anyone to watch.  There's no frills or special effects, but by Thor's hammer, this guy knows his stuff.  Be warned, it's "Physics with the hard stuff left in" and there isn't a whole lot of singing, but if you're wanting to be stretched, Susskind's raw approach is for you.

Image Credits

Feynman teaching: Twitter
Planet Earth II: BBC
Chernobyl: Express
Behave: Amazon



0 Comments

My Favourite Bits of Science

9/21/2019

0 Comments

 

(Part I)

Picture
I chose this picture because I'm smiling...I only realised later that it looked as though I was saying my favourite bit of Science was myself.
Onward to Optimism
    In last week's blog, I talked about bits of Science I find challenging and how there's nothing to be ashamed of in getting stuck.  We're all human and we all struggle (except for Michael Keaton who is too awesome to struggle with anything) so it's OK to ask for help when needed.
    My aim in writing that piece was to encourage people to be open about their difficulties and not feel judged in admitting that sometimes they find stuff hard.  It seems to have been a success and I want to say thank you to everyone who e-mailed me confessing to their own hated parts of Science.  Nevertheless, I feel obligated to counteract the negativity of that essay and write something a bit more upbeat.  What better way to do that, than to write about the bits of science I absolutely adore!
    The challenge I faced this time was narrowing it down.  There are so many things I want to talk about it wouldn't fit into one blog...so I decided to break it into several.  I don't know how many parts there will (or when I'll find the time to write the rest) but I'm going to share my personal picks for the best bits of science ever.  Is this going to be a tad self-indulgent? Probably.  Sorry about that!
Picture
Favourite Scientist (Early) - Michael Faraday
    Michael Faraday was the son of a poverty-stricken blacksmith and never got a chance to attend school.  He routinely faced ridicule and scorn from wealthier echelons of 19th century English society for not being as well educated, but he was a determined investigator and a perpetual thinker who ended up having the last laugh when he invented the basis of pretty much all modern technology. 
    When the chemist Sir Humphry Davy (discoverer of seven elements) accidentally blasted his eyeballs apart during an experiment, Faraday was hired as his lab assistant and soon showed so much skill and intuition that Davy  was prompted to declare Faraday his greatest discovery. 
    Faraday’s most significant contribution to Science was the theory of electromagnetism – the idea that electricity and magnetism are both facets of the same phenomenon and that we can manipulate or generate them given the right tools.  The importance of this discovery is hard to over-sell.  Pretty much every power station in the world runs on Faraday’s principle of inducing electrical current in a wire by spinning a nearby magnet, and almost all our communication techniques rely on controlling electromagnetic fields.
    We have Faraday to thank for mains electricity, radio and television, mobile phones, wi-fi signals, infra-red remotes, X-rays, lasers and all of contemporary astronomy.  For a guy who could barely do fractions, he more or less invented the modern age.
    The main reason I admire him so much however, is not his profound discoveries but his personal character.  Faraday believed in the work he was doing and did it purely for the good of mankind.  He turned down the offer of a knighthood because he didn't believe in titles and he also refused to accept numerous financial rewards because he was not concerned with making money.  He also started giving Science lectures twice a week to members of the public (free of charge) and permitted women and children to attend, because he wanted everyone to have the opportunities he had never been afforded.
    Faraday believed in Science and he believed in the human capacity to understand it, no matter what a person's gender, race or age might be.  As a Science teacher, I can't help but idolise the guy for that.  Oh, and he invented party balloons.  No, seriously, I'm not kidding.  Faraday invented balloons!
Picture
Favourite Scientist (Modern) – Richard Feynman
    Richard Phillips Feynman was in many ways at the other end of the spectrum to Michael Faraday.  While Faraday was a dignified man of honour, Feynman was a charismatic rogue who delighted in pranks and parties (although, for the record, he thoroughly disliked alcohol and drug-use).  While Faraday shunned glamour, Feynman swam in it - scooping a Nobel prize for physics, enjoying the “company” of countless women, and having red carpets laid out for him at weekly lectures. 
    Feynman was basically the Han Solo of physics, known more for his antics than his actual Science.  That's not surprising mind you, given his specialism was quantum field theory, something I can't do justice to in a single paragraph.  Although now's probably a good time to shamelessly plug my book on quantum physics. 
    The best I can do in a few sentences is say that Feynman was the first person to make quantum physics work properly.  Before him, quantum physics was a disheveled array of facts and question marks which nobody had synthesised into a single idea.  Feynman was the guy who achieved that, by establishing the basic principles everything else sprang from.
    The reason I admire Feynman much however, is not for his caddish personality or even for his outstanding contributions to physics.  It's because of the way he approached scientific problem-solving.  All too often in Science you’re fed a bunch of equations and jargon-words which don’t actually get you any deeper to understanding what's going on.  It’s tempting to build on the work of others, but Feynman preferred to do things differently and insisted on working everything out from first principles until he arrived at the same conclusion. 
    Feynman would start with a handful of easy to understand facts and extrapolate one step at a time, never introducing a new concept without picking it to pieces.  He believed that the only way you could understand a phenomenon was to ignore all assumptions and work from the ground upward.  Feynman's approach to knowledge is probably best summed up with this quotation of his: “If I can’t explain it to a freshman, that means I don’t really understand it.”  For Feynman, the art to being a good scientist was to simplify things, not make them more complicated.  Something which is forgotten all too often.
Picture
Favourite Scientist (who was really more of a mathematician) - Emmy Noether
    There's a good chance you've heard of Faraday and Feynman; they're pretty well known figures in Science history.  But not many people have heard of Emmy Noether and that's a shame because she was probably one of the five smartest people of the last hundred years.  Oh and if you're wondering how to say her surname, it should rhyme with "murder" with a soft d.  Actually, the only word I can think of which rhymes properly is the giant flaming demon-monster from Thor: Ragnarok...so if you've seen that film, you're on the right track.
    Born in Germany at the end of the 19th Century, Amalie "Emmy" Noether faced a lot of prejudice throughout her life, partly down to being Jewish and partly down to having a uterus.  Naturally she was treated like dirt at University, with numerous male members of staff requesting she be expelled for the crime of...I dunno...being a woman who's good at math I guess?  She had to work unpaid in her role as lecturer, and had to advertise her talks under a man's name.  But, just like Faraday, Noether was able to confound her doubters by coming up with one of the most important physics theorems in history: Noether's theorem.
    Again, it's pretty hard to summarise Noether's theorem in a few sentences.  The general gist goes something like this however: in every law of physics there are certain things which cannot change.  For example, in thermodynamics we make the assumption that energy cannot be created or destroyed.  In engineering and mechanics we find that it's momentum which stays constant.  In particle physics it's something called lepton number and so on.  What Noether's theorem does is predict which things can and cannot change for any law of physics.  Or, putting it another way, it's the foundational law of physics that everything is built on. 
    Although technically more of a mathematician, Noether's contribution to theoretical physics is so profound it underpins everything from why neutrinos exist to where the Higgs boson comes from.  Oh and as if that wasn't enough, Noether was the woman who helped Einstein figure out the mathematics of his theories of relativity when he got stuck.  Just think about that.  When Einstein got stuck, he asked Noether for help.  Not even Michael Keaton can claim that.
Picture
Favourite Science Author – Isaac Asimov
    My two jobs are talking about Science and writing about Science.  So when I’m planning a lesson or lecture or when I'm sitting down to write an essay, the man I most aspire to emulate is Isaac Asimov.  In a career spanning 52 years, Asimov managed to write or edit over 500 books, getting published in 9 of the 10 Dewey Decimal non-fiction book classifications.  Asimov wrote histories of the Bible, analyses of Shakespeare, books of limericks, biographies of poets and critiques of politics, not to mention a somewhat phenomenal career as a science-fiction author.  For me however, his greatest talent was writing about Science for non-experts.
    With his wolf-man facial hair, Asimov was a professor of Biochemistry at Boston University and wrote thousands of short articles and essays explaining Science for the general public.  Although some people find his acerbic self-agrandising sense of humour a little obnoxious, I always admired him as a teacher because of his guiding principle when it came to explaining things: “Be clear”.
    Asimov wrote on every scientific topic imaginable, from the validity of IQ testing to the nuances of special relativity and at all times he insisted that as long as his explanations were clear, he was succeeding.  He didn’t pepper his writing with flowery prose or philosophical asides (something I am often guilty of), he just stated the facts in a logical progression.  So talented was Asimov, that other Scientists would challenge him to write articles on increasingly complicated and difficult-to-explain subjects, but Asimov always won because he knew something important: if you can say it with Science words, you can say it with regular words too.
    Sometimes you read his work and think, “why didn’t I think of saying it like that?  Ot’s really simple,” and that is the mark of a good teacher.  Someone who can make even the most complicated ideas seem obvious.  Frankly, he puts most other science authors to shame, myself very much included.  Obviously, I know I will never be as good a writer as him...but you've got to have something to shoot for.
Image Credits
Michael Faraday: BBC Radio 4
Richard Feynman: UAF
Emmy Noether: agnesscott
Isaac Asimov: Telegraph
0 Comments

Bits of Science I Suck At...

9/7/2019

0 Comments

 
Picture
New educational reforms coming in 2020!
Pobody's Nerfect
    In 1999 the Canadian non-profit organisation Companies Committed to Kids ran a television campaign aimed at boosting children’s self-esteem with the slogan: “Nobody’s good at everything, but everybody’s good at something.” By contrast, Public Service Announcements in the UK are about wearing a seat-belt so you don’t kill your dad in a car crash.  I mean, they’re both important messages but as a teacher I’m more interested in the first one.  It’s rare that I crash a car inside my classroom but I frequently come across students doubting their ability to do STEM (Science Tech Engineering Maths). 
    That’s to be expected, of course.  I mean, let’s be blunt about this…STEM is hard.  There’s no such thing as an intellectually perfect person (with the obvious exceptions of Spock and Data from Star Trek) so naturally everyone struggles from time to time.  In a perfect world there wouldn’t be any shame in admitting this, but for all sorts of reason we’re often reluctant to advertise our cognitive shortcomings, and this presents a real dilemma for educators.
    As both a teacher and author I want to make sure my students/readers feel they can trust me to “know my stuff”.  But at the same time, I want them to see me struggle so they don’t feel bad about running into difficulty themselves.  If people perceive me as infallible they’re less likely to ask for my help because they’ll be worried about me judging them, but on the other hand if they see me as useless they won’t ask for help in the first place because they won’t believe I can provide it.  How do you get that balance right? 
    I’ve been contemplating this question a lot over the past week with the start of a new academic term, when it struck me that the simplest thing to do would be write a public declaration of various bits of STEM I find difficult.  I’m not one for subtlety (check the title of the blog) so, without further ado here’s a list of the top STEM areas you don’t want me teaching you.  How's that for a Buzzfeed-worthy title? 
Picture
Buzzfeed's "Top 2 Star Trek Characters" list was a little underwhelming
Almost All of Biology
    This one’s no secret to anyone who has seen me teach the subject.  I know virtually nothing about animals, I’m not 100% sure what a chromosome is and I can’t tell you what the pancreas does (something to do with diabetes???).  Biology has always been the weakest of the three natural sciences for me, and it's almost a running joke in my department that I'm not allowed to cover a Biology lesson.
   It’s hard to pin down why I lost my way with Biology (my high school teacher was actually really good) but for some reason I got turned off to the subject as a teen.  By the time I realised it was cool, I was a busy adult and could never find the opportunity to sit down and learn the basics.
    On rare occasions when I do have to teach the subject, I read over the material the night before, follow a detailed lesson plan on my desk and by the following night I’ve typically forgotten everything I said.  Really, students in my Biology classes might as well just read out-loud from the textbook…that’s more or less what I’m doing.
    There are a few exceptions to this rule - I’m fairly well-versed on the brain, the biochemistry of medicines and drugs, and I know a disturbing amount about the composition of plant-matter - but other than that I’m typically worse than a rank amateur.  I really wanted to put a Biology metaphor in there but I don't know any!  That's the problem!
Picture
I dunno, it's some kind of bear?

Basic Mental Arithmetic…that most children can do
    I’ve got a tense working relationship with mathematics.  The kind you have with a work colleague after you send an e-mail to everyone in the office mocking the shape of their ears, only to realise you accidentally copied them in as well.
    I can use mathematics when necessary, but it’s not something I seek out.  I only like it when I’m using it for chemistry or physics and if I go outside that comfort zone I’m immediately drowning in symbols.  And, without a doubt, the area of maths I’m most clumsy with is basic mental arithmetic. 
    I’m serious here.  I, a thirty one year old STEM teacher with a Master’s degree and a couple of bestselling books to my name, have difficulty doing simple sums in my head.  I’ll muddle fractions, I’ll miss decimal places, I’ll get powers of ten in the wrong order and I can’t even sum a series of two digit numbers without writing them down first.  I can never split the bill in a restaurant, I am lousy at calculating percentages and I can genuinely see myself getting hauled in front of a judge some day for tax fraud because I’ve accidentally forgotten to carry the one or something. 
    This can be quite embarrassing in front of a class when I’m struggling to work out 107 - 9 in my head, but there it is.  I can explain all four of the Maxwell equations at the drop of a hat, but ask me to  work out 60% of 50 and I’m going to need a minute.
    There is a mental condition called dyscalculia which is a bit like dyslexia for numbers.  I have no idea if I’ve got it (I wouldn’t be surprised) but either way, it doesn’t seem to be something I can avoid.  That’s actually one of the reasons I respect people who work in retail.  I’ve got no clue how to count my own change, let alone someone else’s. 
Picture
I don't even know if that's right!
Fluid Mechanics
    I’d like to claim this one is just a “fiddly topic” everyone struggles with, but the whole point of this blog is that different people struggle with different things, so I can’t let myself off easy by saying everyone finds this topic hard.  But...for the record…they totally do. 
    Fluid mechanics is the physics of how gases and liquids move and although I can massage my ego by reminding myself that lots of people find it tough, I still suspect I’m much worse at it than most physicists. 
    You may have come across the entry-level stuff in school yourself.  Things like Archimedes’ principle and buoyancy, terminal velocity and air-resistance, gas pressure and expansion etc.  They’re all topics I feel edgy when teaching, so if you're in my class and I look a bit nervous talking about these things, it's because I am!
    In fact, to give you some idea of how lousy I am at fluid mechanics, I once managed to foul up a calculation so badly I ended up proving the Atlantic Ocean was 3 centimeters deep.  Spoiler alert: it isn’t.  Clearly this is a topic I’ve never been particularly…wait for it…fluent in!  Ha ha ha!  Fluid/Fluent?  What an amazing use of language!   I’m so freaking hilarious!  OK, but seriously, buy my book.  
Picture
Psssh! What are you worried about? You'll hit the bottom in like two seconds!

And Finally, My Arch Nemesis
    If Physics was a 90s video game, the boss at the end of the last level would be (for me at least) the topic of circular motion.  Batman has the Joker.  Sherlock Holmes has Moriarty.  Kanye West has rational thinking.  I have circular motion.  My ancient rival, tormenting me since before time began.
    Circular motion is, as the name suggests, the physics of things moving in circles.  Anything from the moon orbiting Earth to balls going round on strings.  It’s counter-intuitive, it’s fiddly, it’s mathematically fiendish and it kicks my butt every single time I grapple with it.
    With most of the subjects I teach and write about, I understand them deeply enough to explain them in lots of different ways, but when it comes to circular motion I basically just know the facts.  I don’t feel like I truly grasp them in my gut.  I just cannot get my head round it (I’d like to claim that pun was intentional but it wasn’t.  It was, in fact…pun-intentional).
    I first encountered this jackass of a topic while studying A-level physics myself at the age of 17.  I knew right away it was going to be trouble and the exam I sat on it was so horrible I remember coming out of it and making the joke to one of my friends: “well, there go my University options”.  In fact, my score on that exam cost me the top grade at A-level because I nailed all the other papers but bombed that one hard.
    This experience of learning circular motion has scarred me so much that I can barely listen to Circle of Life without feeling deep bitterness, and every year when we’re carving up the syllabus to teach, my head of department knows “Don’t give the circular motion topic to tim!” because I’ll go on strike if I have to teach it. 
Picture
Pure evil
There Is Nothing To Be Ashamed Of
    Everyone likes to feel smart.  We place a huge value on intellect and it’s no wonder people never want to admit when they can’t do something.  But I really think we need to change that mindset.  STEM is a vast subject encompassing everything from how lions breed to how computer networks function.  Given the sheer amount of information and skills that fall into STEM, it would be weird if you didn’t suck at at least some of it.
    There’s so much out there to learn, it’s ridiculous to set yourself the target of being good at everything you ever study.  Sometimes you can be smart and still suck at something.  That doesn’t mean you’re slow.  It simply means you find some stuff hard.  Like everyone ever. 
   I have to remember that just because I can’t do certain parts of STEM with ease, doesn’t mean the bits I can do are suddenly tainted or devalued.  In fact, I think this is one of the most important things to remember about the scientific community in general: it's a team effort and it has to be.  We're trying to figure out the Universe, nobody can do that on their own!
    I’m not very good at Biology but that’s OK because there are plenty of doctors and zoologists who have me covered.  I’m not very good at mental arithmetic, but that's OK because Charles Babbage and Ada Lovelace invented the calculator!  I’m not too hot on fluid mechanics but that's OK because there are so many chemical engineers out there I don’t need to worry about it.  Circular motion…that’s a thing which exists.
    While I’ll always strive to better myself and face intellectual challenges as they come, I can accept that some parts of STEM I need other people’s help on.  And that’s a good thing.  That’s what makes STEM so awesome; the collaborations it leads to.  Being good at everything has its advantages but it isolates you quite a lot.  Being human is much better because it means not only can you help other people when they’re stuck, they can help you too.  Not only is there something for everyone in STEM, but there’s someone for everything. 

Good luck to all the students out there starting new courses and to all the fallible educators doing their best to help!!!

Image Credits
Dunce cap: polaine
Spock and Data: archive4plebs
Small green bear: animals.mom
Simple sums: Oakridgeteam
Jack and Rose: lepoint
Circle: casio

0 Comments
<<Previous

    tim james

    I love science, let me tell you why. 
    ​

    Archives

    December 2020
    June 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    September 2019
    July 2019
    June 2019
    May 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016

    Categories

    All

    RSS Feed

Powered by Create your own unique website with customizable templates.
  • Home
  • About
  • Books and reviews
  • Blog
  • Blogs by Topic
  • Media and Appearances